Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic functional connectivity (dFC, i.e., a characterization of spontaneous fluctuations in functional connectivity over time).
View Article and Find Full Text PDFThe relative inability to produce effortful movements is the most specific motor sign of Parkinson's disease, which is primarily characterized by loss of dopaminergic terminals in the putamen. The motor motivation hypothesis suggests that this motor deficit may not reflect a deficiency in motor control per se, but a deficiency in cost-benefit considerations for motor effort. For the first time, we investigated the quantitative effect of dopamine depletion on the motivation of motor effort in Parkinson's disease.
View Article and Find Full Text PDFExcitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects.
View Article and Find Full Text PDFParkinson's disease (PD) is currently diagnosed largely on the basis of expert judgement with neuroimaging serving only as a supportive tool. In a recent study, we identified a hypometabolic midbrain cluster, which includes parts of the substantia nigra, as the best differentiating metabolic feature for PD-patients based on group comparison of [F]-fluorodeoxyglucose ([F]-FDG) PET scans. Longitudinal analyses confirmed progressive metabolic changes in this region and, an independent study showed great potential of nigral metabolism for diagnostic workup of parkinsonian syndromes.
View Article and Find Full Text PDFImpulsive-compulsive behaviour (ICB) is a frequently observed non-motor symptom in early Parkinson's disease after initiating dopamine replacement therapy. At the opposite end of the motivated behaviour spectrum, apathy occurs in early Parkinson's disease even before dopamine replacement is started. The co-occurrence of these behavioural conditions in Parkinson's disease raises questions about their relationship and underlying pathophysiological determinants.
View Article and Find Full Text PDFSurvival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2023
Objective: While variations in the first intron of the (, rs9939609 T/A variant) have long been identified as a major contributor to polygenic obesity, the mechanisms underlying weight gain in risk allele carriers still remain elusive. On a behavioral level, variants have been robustly linked to trait impulsivity. The regulation of dopaminergic signaling in the meso-striatal neurocircuitry by these variants might represent one mechanism for this behavioral alteration.
View Article and Find Full Text PDFWestern diets rich in fat and sugar promote excess calorie intake and weight gain; however, the underlying mechanisms are unclear. Despite a well-documented association between obesity and altered brain dopamine function, it remains elusive whether these alterations are (1) pre-existing, increasing the individual susceptibility to weight gain, (2) secondary to obesity, or (3) directly attributable to repeated exposure to western diet. To close this gap, we performed a randomized, controlled study (NCT05574660) with normal-weight participants exposed to a high-fat/high-sugar snack or a low-fat/low-sugar snack for 8 weeks in addition to their regular diet.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
March 2023
Background: Deep brain stimulation of the anterior limb of the internal capsule (ALIC)/nucleus accumbens is an effective treatment in patients with obsessive-compulsive disorder but may increase impulsive behavior. We aimed to investigate how active stimulation alters subdomains of impulsive decision making and whether respective effects depend on the location of stimulation sites.
Methods: We assessed 15 participants with obsessive-compulsive disorder performing the Cambridge Gambling Task during active and inactive ALIC/nucleus accumbens deep brain stimulation.
Feeding behavior must be continuously adjusted to match energy needs. Recent discoveries in murine models identified uridine as a regulator of energy balance. Here, we explore its contribution to the complex control of food intake in humans by administering a single dose of uridine monophosphate (UMP; 0.
View Article and Find Full Text PDFThe prevailing network perspective of Parkinson's disease (PD) emerges not least from the ascending neuropathology traceable in histological studies. However, whether longitudinal in vivo correlates of network degeneration in PD can be observed remains unresolved. Here, we applied a trimodal imaging protocol combining 18F-fluorodeoxyglucose (FDG)- and 18F-fluoro-L-Dopa- (FDOPA)-PET with resting-state functional MRI to assess longitudinal changes in midbrain metabolism, striatal dopamine depletion and striatocortical dysconnectivity in 17 well-characterized PD patients.
View Article and Find Full Text PDFBimanual coordination is impaired in Parkinson's disease affecting patients' ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson's disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson's disease (mean age ± standard deviation: 56.
View Article and Find Full Text PDFDifferent types of rewards such as food and money can similarly drive our behavior owing to shared brain processes encoding their subjective value. However, while the value of money is abstract and needs to be learned, the value of food is rooted in the innate processing of sensory properties and nutritional utilization. Yet, the actual consumption of food and the receipt of money have never been directly contrasted in the same experiment, questioning what unique neural processes differentiate those reward types.
View Article and Find Full Text PDFMost classification approaches for idiopathic Parkinson's disease subtypes primarily focus on motor and non-motor symptoms. Besides these characteristics, other features, including gender or genetic polymorphism of dopamine receptors are potential factors influencing the disease's phenotype. By utilizing a kmeans-clustering algorithm we were able to identify three subgroups mainly characterized by gender, DRD2 Taq1A (rs1800497) polymorphism-associated with changes in dopamine signaling in the brain-and disease progression.
View Article and Find Full Text PDFDynamic contrast enhanced MRI (DCE-MRI) is a useful method to monitor therapy assessment in malignancies but must be reliable and comparable for successful clinical use. The aim of this study was to evaluate the inter- and intrarater reproducibility of DCE-MRI in lung cancer. At this IRB approved single centre study 40 patients with lung cancer underwent up to 5 sequential DCE-MRI examinations.
View Article and Find Full Text PDFGenetic variations affecting dopaminergic neuromodulation such as the DRD2/ANKK1 and the COMT Val158Met polymorphisms contribute to goal-directed behavior that requires a balance between stabilization and updating of current states and behaviors. Dopamine is also thought to be relevant for encoding of surprise signals to sensory input and adaptive learning. A link between goal-directed behavior and learning from surprise is therefore plausible.
View Article and Find Full Text PDFExcessive food intake and reduced physical activity have long been established as primary causes of obesity. However, the underlying mechanisms causing this unhealthy behavior characterized by heightened motivation for food but not for physical effort are unclear. Despite the common unjustified stigmatization that obesity is a result of laziness and lack of discipline, it is becoming increasingly clear that high-fat diet feeding and obesity cause alterations in brain circuits that are critical for the control of motivational behavior.
View Article and Find Full Text PDFBackground: Early and severe neuronal loss in the cholinergic basal forebrain is observed in Alzheimer's disease (AD). To date, cholinomimetics play a central role in the symptomatic treatment of AD dementia. Although basic research indicates that a cholinergic deficit is present in AD before dementia, the efficacy of cholinomimetics in mild cognitive impairment (MCI) remains controversial.
View Article and Find Full Text PDFFreezing of gait is a common phenomenon of advanced Parkinson's disease. Besides locomotor function per se, a role of cognitive deficits has been suggested. Limited evidence of associated dopaminergic deficits points to caudatal denervation.
View Article and Find Full Text PDFBackground: Subjective cognitive decline (SCD) may occur very early in the course of Parkinson's disease (PD) before the onset of objective cognitive decline. Data on neural correlates and determinants of SCD in PD are rare.
Objective: The aim of the present study was to identify neural correlates as well as sociodemographic, clinical, and neuropsychological predictors of SCD in patients with PD.
Dynamic causal models (DCMs) of electrophysiological data allow, in principle, for inference on hidden, bulk synaptic function in neural circuits. The directed influences between the neuronal elements of modeled circuits are subject to delays due to the finite transmission speed of axonal connections. Ordinary differential equations are therefore not adequate to capture the ensuing circuit dynamics, and delay differential equations (DDEs) are required instead.
View Article and Find Full Text PDFOur increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression.
View Article and Find Full Text PDFBimanual motor control declines during ageing, affecting the ability of older adults to maintain independence. An important underlying factor is cortical atrophy, particularly affecting frontal and parietal areas in older adults. As these regions and their interplay are highly involved in bimanual motor preparation, we investigated age-related connectivity changes between prefrontal and premotor areas of young and older adults during the preparatory phase of complex bimanual movements using high-density electroencephalography.
View Article and Find Full Text PDFSensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets.
View Article and Find Full Text PDFDrugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.
View Article and Find Full Text PDF