IEEE/ACM Trans Comput Biol Bioinform
November 2006
Converting a biochemical reaction network to a set of kinetic rate equations is tedious and error prone. We describe known interface paradigms for inputing models of intracellular regulatory networks: graphical layout (diagrams), wizards, scripting languages, and direct entry of chemical equations. We present the JigCell Model Builder, which allows users to define models as a set of reaction equations using a spreadsheet (an example of direct entry of equations) and outputs model definitions in the Systems Biology Markup Language, Level 2.
View Article and Find Full Text PDFThe life of a cell is governed by the physicochemical properties of a complex network of interacting macromolecules (primarily genes and proteins). Hence, a full scientific understanding of and rational engineering approach to cell physiology require accurate mathematical models of the spatial and temporal dynamics of these macromolecular assemblies, especially the networks involved in integrating signals and regulating cellular responses. The Virginia Tech Consortium is involved in three specific goals of DARPA's computational biology program (Bio-COMP): to create effective software tools for modeling gene-protein-metabolite networks, to employ these tools in creating a new generation of realistic models, and to test and refine these models by well-conceived experimental studies.
View Article and Find Full Text PDF