Introduction: Blood-based biomarkers for Alzheimer's disease (AD) have been widely studied, but direct comparisons of several biomarkers in clinical settings remain limited.
Methods: In this cross-sectional study, plasma biomarkers from 197 participants in the BIODEGMAR cohort (Hospital del Mar, Barcelona) were analyzed. Participants were classified based on AD cerebrospinal fluid (CSF) core biomarkers.
Introduction: Identifying the link between early Alzheimer's disease (AD) pathological changes and neurodegeneration in asymptomatic individuals may lead to the discovery of preventive strategies. We assessed longitudinal brain atrophy and cognitive decline as a function of cerebrospinal fluid (CSF) AD biomarkers in two independent cohorts of cognitively unimpaired (CU) individuals.
Methods: We used longitudinal voxel-based morphometry (VBM) in combination with hippocampal subfield segmentation.
In Alzheimer's disease (AD), Aβ triggers p-tau secretion, which drives tau aggregation. Therefore, it is critical to characterize modulators of Aβ-related p-tau increases which may alter AD trajectories. Here, we assessed whether factors known to alter tau levels in AD modulate the association between fibrillar Aβ and secreted p-tau determined in the cerebrospinal fluid (CSF).
View Article and Find Full Text PDFCSF concentrations of β-amyloid 42 (Aβ42) and phosphorylated tau (p-tau) are well-established biomarkers of Alzheimer's disease and have been studied in relation to several neuropathological features both in patients and in cognitively unimpaired individuals. The CSF p-tau/Aβ42 ratio, a biomarker combining information from both pathophysiological processes, has emerged as a promising tool for monitoring disease progression, even at pre-clinical stages. Here, we studied the association between the CSF p-tau/Aβ42 ratio with downstream markers of pre-clinical Alzheimer's disease progression including brain structure, glucose metabolism, fibrillary Aβ deposition and cognitive performance in 234 cognitively unimpaired individuals, who underwent cognitive testing, a lumbar puncture, MRI, 18F-fluorodeoxyglucose and 18F-flutemetamol PET scanning.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) biomarkers of synaptic dysfunction, neuroinflammation, and glial response, complementing Alzheimer's disease (AD) core biomarkers, have improved the pathophysiological characterization of the disease. Here, we tested the hypothesis that the co-expression of multiple CSF biomarkers will help the identification of AD-like phenotypes when biomarker positivity thresholds are not met yet.
Methods: Two hundred and seventy cognitively unimpaired adults with family history (FH) of sporadic AD (mean age = 60.
Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease. No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and single molecule array (SIMOA) AlZpath p-tau217. The study included 392 participants, 162 with Alzheimer's disease, 70 with other neurodegenerative diseases with CSF biomarkers and 160 healthy controls.
View Article and Find Full Text PDFβ-blockers that easily cross the blood-brain barrier (BBB) seem to diminish the risk of Alzheimer's disease (AD), hypothetically facilitating waste clearance. However, their effect on AD pathophysiological markers is unknown. We compared cerebrospinal fluid (CSF) AD biomarker levels among non-demented individuals taking low, intermediate, or high BBB permeable β-blockers in two samples (ADNI: = 216; EPAD: = 79).
View Article and Find Full Text PDFBackground: While numerous studies have identified blood proteins that modulate brain aging in mice, the direct translation of these findings to human health remains a substantial challenge. Bridging this gap is critical for developing interventions that can effectively target human brain aging and associated diseases.
Methods: We first identified 12 proteins with aging or rejuvenating properties in murine brains through a systematic review.
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ, p-tau, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [F] flutemetamol positron emission tomography (n = 341).
View Article and Find Full Text PDFSeveral studies have identified blood proteins that influence brain aging performance in mice, yet translating these findings to humans remains challenging. Here we found that higher predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans. We first identified 12 proteins with aging or rejuvenating effects on murine brains through a systematic review.
View Article and Find Full Text PDFIntroduction: We examined whether baseline glial markers soluble triggering receptor expressed on myeloid cell 2 (sTREM2), chitinase 3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF), and plasma GFAP are associated with cognitive change in cognitively unimpaired (CU) individuals at risk of Alzheimer's disease (AD).
Methods: A total of 353 CU (mean age 60.9 years) participants were included (mean follow-up time 3.
Introduction: Brain glucose hypometabolism is a preclinical feature of Alzheimer's disease (AD). Dietary omega-3 fatty acids promote brain glucose metabolism, but clinical research is incipient. Circulating omega-3s objectively reflect their dietary intake.
View Article and Find Full Text PDFIntroduction: The lack of cognitive awareness, anosognosia, is a clinical deficit in Alzheimer's disease (AD) dementia. However, an increased awareness of cognitive function, hypernosognosia, may serve as a marker in the preclinical stage. Subjective cognitive decline (SCD) might correspond to the initial symptom in the dynamic trajectory of awareness, but SCD might be absent along with low awareness of actual cognitive performance in the preclinical stage.
View Article and Find Full Text PDFAnti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use.
View Article and Find Full Text PDFBackground: Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease (AD). No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and SIMOA ALZpath p-tau217.
Aim: To evaluate the diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217 assays for AD.
This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study.
View Article and Find Full Text PDFStaging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status.
View Article and Find Full Text PDF