The current opioid crisis highlights the urgent need to develop safe and effective pain medications. Thus, neurotensin (NT) compounds represent a promising approach, as the antinociceptive effects of NT are mediated by activation of the two G protein-coupled receptor subtypes (i.e.
View Article and Find Full Text PDFNeurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides.
View Article and Find Full Text PDFPepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation.
View Article and Find Full Text PDFThe neurotensin receptors are attractive targets for the development of new analgesic compounds. They represent potential alternatives or adjuvants to opioids. Herein, we report the structural optimization of our recently reported macrocyclic peptide analogues of NT(8-13).
View Article and Find Full Text PDFNeurotensin exerts potent analgesic effects following activation of its cognate GPCRs. In this study, we describe a systematic exploration, using structure-based design, of conformationally constraining neurotensin (8-13) with the help of macrocyclization and the resulting impacts on binding affinity, signaling, and proteolytic stability. This exploratory study led to a macrocyclic scaffold with submicromolar binding affinity, agonist activity, and greatly improved plasma stability.
View Article and Find Full Text PDF