Several Diptera species are known to transmit pathogens of medical and veterinary interest. However, identifying these species using conventional methods can be time-consuming, labor-intensive, or expensive. A computer vision-based system that uses Wing interferential patterns (WIPs) to identify these insects could solve this problem.
View Article and Find Full Text PDFHematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic infectious diseases, identification tools with field application are required to strengthen efforts in the entomological survey of arthropods with medical interest.
View Article and Find Full Text PDFBackground: Bubbles often mask the mucosa during capsule endoscopy (CE). Clinical scores assessing the cleanliness and the amount of bubbles in the small bowel (SB) are poorly reproducible unlike machine learning (ML) solutions. We aimed to measure the amount of bubbles with ML algorithms in SB CE recordings, and compare two polyethylene glycol (PEG)-based preparations, with and without simethicone, in patients with obscure gastro-intestinal bleeding (OGIB).
View Article and Find Full Text PDFBackground And Aims: Current artificial intelligence (AI)-based solutions for capsule endoscopy (CE) interpretation are proprietary. We aimed to evaluate an AI solution trained on a specific CE system (Pillcam®, Medtronic) for the detection of angiectasias on images captured by a different proprietary system (MiroCam®, Intromedic).
Material And Methods: An advanced AI solution (Axaro®, Augmented Endoscopy), previously trained on Pillcam® small bowell images, was evaluated on independent datasets with more than 1200 Pillcam® and MiroCam® still frames (equally distributed, with or without angiectasias).
Background: Cleanliness scores in small-bowel capsule endoscopy (SBCE) have poor reproducibility. The aim of this study was to evaluate a neural network-based algorithm for automated assessment of small-bowel cleanliness during capsule endoscopy.
Methods: 600 normal third-generation SBCE still frames were categorized as "adequate" or "inadequate" in terms of cleanliness by three expert readers, according to a 10-point scale, and served as a training database.