Publications by authors named "Marc Santolini"

Article Synopsis
  • Resource allocation for innovative science and technology projects can be inefficient due to lengthy grant application processes and reliance on limited expert reviewers.
  • A new "community review" system was created to speed up the allocation of micro-grants, using a collaborative approach where grant applicants also participate in the review process.
  • This study evaluated the system over 147 projects, showing it to be fast, scalable, and fair, while also enabling continuous improvement of project proposals through multiple review rounds.
View Article and Find Full Text PDF

More than ever, humanity relies on robust scientific knowledge of the world and our place within it. Unfortunately, our contemporary view of science is still suffused with outdated ideas about scientific knowledge production based on a naive kind of realism. These ideas persist among members of the public and scientists alike.

View Article and Find Full Text PDF

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity.

View Article and Find Full Text PDF

International development and aid are often conducted through the allocation of funding determined by decisions of non-locals, especially in the west for those in the global south. In addition, such funding is often disassociated from local expertise, therefore providing little long-term developmental impact and generating distrust. This is particularly true for conservation, as well as environmental and educational programmes.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the importance of hospital interdependence in influencing patient outcomes, particularly focusing on in-hospital mortality and length of stay.
  • It utilized a network science approach to analyze data from Florida and California, revealing that hospitals in the most central network positions had better outcomes compared to peripheral ones.
  • Results indicated that peripheral hospitals had higher mortality rates and longer lengths of stay, suggesting that central hospital positioning plays a crucial role in optimizing patient care.
View Article and Find Full Text PDF

Science advances by pushing the boundaries of the adjacent possible. While the global scientific enterprise grows at an exponential pace, at the mesoscopic level the exploration and exploitation of research ideas are reflected through the rise and fall of research fields. The empirical literature has largely studied such dynamics on a case-by-case basis, with a focus on explaining how and why communities of knowledge production evolve.

View Article and Find Full Text PDF

This cross-cohort study aimed to (1) determine a network-based molecular signature that predicts the likelihood of inadequate response to the tumor necrosis factor-ɑ inhibitor (TNFi) therapy, infliximab, in ulcerative colitis (UC) patients, and (2) address biomarker irreproducibility across different cohort studies. Whole-transcriptome microarray data were derived from biopsies of affected colon tissue from 2 cohorts of infliximab-treated UC patients (training N = 24 and validation N = 22). Response was defined as endoscopic and histologic healing at 4-6 weeks and 8 weeks, respectively.

View Article and Find Full Text PDF

Background: The rise of major complex public health problems, such as vaccination hesitancy and access to vaccination, requires innovative, open, and transdisciplinary approaches. Yet, institutional silos and lack of participation on the part of nonacademic citizens in the design of solutions hamper efforts to meet these challenges. Against this background, new solutions have been explored, with participatory research, citizen science, hackathons, and challenge-based approaches being applied in the context of public health.

View Article and Find Full Text PDF

Background: The early detection of clusters of infectious diseases such as the SARS-CoV-2-related COVID-19 disease can promote timely testing recommendation compliance and help to prevent disease outbreaks. Prior research revealed the potential of COVID-19 participatory syndromic surveillance systems to complement traditional surveillance systems. However, most existing systems did not integrate geographic information at a local scale, which could improve the management of the SARS-CoV-2 pandemic.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).

View Article and Find Full Text PDF

Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways.

View Article and Find Full Text PDF

Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome.

View Article and Find Full Text PDF

The polygenic nature of complex diseases offers potential opportunities to utilize network-based approaches that leverage the comprehensive set of protein-protein interactions (the human interactome) to identify new genes of interest and relevant biological pathways. However, the incompleteness of the current human interactome prevents it from reaching its full potential to extract network-based knowledge from gene discovery efforts, such as genome-wide association studies, for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we provide a framework that integrates the existing human interactome information with experimental protein-protein interaction data for FAM13A, one of the most highly associated genetic loci to COPD, to find a more comprehensive disease network module.

View Article and Find Full Text PDF

Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca transient without any constraint on the action potential.

View Article and Find Full Text PDF

Probing the dynamic control features of biological networks represents a new frontier in capturing the dysregulated pathways in complex diseases. Here, using patient samples obtained from a pancreatic islet transplantation program, we constructed a tissue-specific gene regulatory network and used the control centrality (Cc) concept to identify the high control centrality (HiCc) pathways, which might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found that HiCc pathway genes were significantly enriched with modest GWAS -values in the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study.

View Article and Find Full Text PDF

High-throughput technologies, offering an unprecedented wealth of quantitative data underlying the makeup of living systems, are changing biology. Notably, the systematic mapping of the relationships between biochemical entities has fueled the rapid development of network biology, offering a suitable framework to describe disease phenotypes and predict potential drug targets. However, our ability to develop accurate dynamical models remains limited, due in part to the limited knowledge of the kinetic parameters underlying these interactions.

View Article and Find Full Text PDF

Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • A traditional method of studying complex diseases focuses on finding genes with overall expression differences between healthy and diseased individuals, but this can overlook individual gene contributions due to population diversity.
  • By analyzing gene expression changes in over 100 genetically distinct mouse strains, researchers identified genes linked to heart disease severity that may be missed in broader analyses.
  • These identified genes are not only relevant to cardiac diseases in mice but also interact significantly with human cardiac disease genes, highlighting the need for personalized approaches to discover and treat complex diseases effectively.
View Article and Find Full Text PDF

We previously reported a genetic analysis of heart failure traits in a population of inbred mouse strains treated with isoproterenol to mimic catecholamine-driven cardiac hypertrophy. Here, we apply a co-expression network algorithm, wMICA, to perform a systems-level analysis of left ventricular transcriptomes from these mice. We describe the features of the overall network but focus on a module identified in treated hearts that is strongly related to cardiac hypertrophy and pathological remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Low vitamin D status during pregnancy was investigated as a potential risk factor for developing preeclampsia, with a study comparing high (4,400 IU/day) versus low (400 IU/day) vitamin D supplementation.
  • The study included 881 women, with 816 analyzed, revealing no significant difference in preeclampsia incidence between the treatment and control groups, although sufficient vitamin D levels were linked to a reduced risk in later analysis.
  • Gene expression studies showed 348 vitamin D-associated genes were differentially expressed in women who developed preeclampsia, highlighting the role of vitamin D in immune responses and inflammation.
View Article and Find Full Text PDF

Background: Adult skeletal muscles are composed of slow and fast myofiber subtypes which each express selective genes required for their specific contractile and metabolic activity. Six homeoproteins are transcription factors regulating muscle cell fate through activation of myogenic regulatory factors and driving fast-type gene expression during embryogenesis.

Results: We show here that Six1 protein accumulates more robustly in the nuclei of adult fast-type muscles than in adult slow-type muscles, this specific enrichment takes place during perinatal growth.

View Article and Find Full Text PDF

Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD.

View Article and Find Full Text PDF

The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs.

View Article and Find Full Text PDF

Thousands of long intergenic non-coding RNAs (lincRNAs) are encoded by the mammalian genome. However, the function of most of these lincRNAs has not been identified in vivo. Here, we demonstrate a role for a novel lincRNA, linc-MYH, in adult fast-type myofiber specialization.

View Article and Find Full Text PDF