This work describes the first hydrothermal synthesis in fluoride medium of Ni-Al montmorillonite-like phyllosilicates, in which the only metallic elements in the octahedral sheet are Ni and Al. X-ray diffraction, chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscopy and transmission electron microscopy confirm that the synthesized samples are montmorillonite-like phyllosilicates having the expected chemical composition. The specific surface areas of the samples are relatively large (>100 m² g¹) compared to naturally occurring montmorillonites.
View Article and Find Full Text PDFBoronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state.
View Article and Find Full Text PDFIn the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements.
View Article and Find Full Text PDFWe describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure.
View Article and Find Full Text PDFFuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties.
View Article and Find Full Text PDFHydrogen technologies and especially fuel cells are key components in the battle to find alternate sources of energy to the highly polluting and economically constraining fossil fuels in an aim to preserve the environment. The present paper shows the synthesis of surface functionalized silica nanoparticles, which are used to prepare grafted silica/SPEEK nanocomposite membranes. The nanoparticles are grafted either with hexadecylsilyl or aminopropyldimethylsilyl moieties or both.
View Article and Find Full Text PDFThis work presents the elaboration of porous silica nanospheres, eventually amine functionalized, which are used as the inorganic filler in mixed matrix silica/SPEEK membranes. The surface of the silica nanoparticles is modified by grafting (3-aminopropyl)dimethylethoxysilane (APDMS). The two sets of nanocomposite membranes obtained at varying silica loadings are characterized for their proton conductivity and water uptake properties.
View Article and Find Full Text PDFClay-PEO nanocomposites can have large electrical conductivities that make them potential electrolyte materials for rechargeable lithium batteries, but the origin of these large conductivities, especially for Li-containing materials, is poorly understood. This paper presents X-ray diffraction (XRD), TGA-DTA, and (7)Li and (23)Na NMR data for PEO nanocomposites made with natural (SWy-1) and synthetic (MNTS) montmorillonite clays that provide new insight into interlayer structure. An increase in basal d(001)-spacings demonstrates successful intercalation of PEO in all samples, and X-ray line narrowing shows that this intercalation improves the layer stacking order.
View Article and Find Full Text PDFInteractions of two homopolypeptides (polylysine and polyglutamic acid) with a synthetic montmorillonite were studied by 1H MAS, 1H-27Al HETCOR and 1H-13C CP-MAS NMR experiments. 1H-27Al HETCOR with 1H spin-diffusion NMR appears to be a powerful probe for the identification of the polypeptide fragments, which interact with the montmorillonite interlayer surfaces. In particular, selective interactions were observed between the polypeptide side-chains and the montmorillonite octahedral aluminum atoms.
View Article and Find Full Text PDF