Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase.
View Article and Find Full Text PDFThe robust proliferation of cancer cells requires vastly elevated levels of protein synthesis, which relies on a steady supply of aminoacylated tRNAs. Delivery of tRNAs to the cytoplasm is a highly regulated process, but the machinery for tRNA nuclear export is not fully elucidated. In this study, using a live cell imaging strategy that visualizes nascent transcripts from a specific tRNA gene in yeast, we identified the nuclear basket proteins Mlp1 and Mlp2, two homologs of the human TPR protein, as regulators of tRNA export.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2017
The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast , the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs.
View Article and Find Full Text PDFTranscriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase.
View Article and Find Full Text PDFCohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion.
View Article and Find Full Text PDFThe capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration.
View Article and Find Full Text PDFSilent chromatin in budding yeast is propagated from one generation to the next, even though 'silenced' genes are occasionally expressed.
View Article and Find Full Text PDFtRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression.
View Article and Find Full Text PDFMany proteins are post-translationally modified by lipid moieties such as palmitoyl or prenyl (e.g., farnesyl) groups, creating functional proteolipids.
View Article and Find Full Text PDFMethods Mol Biol
April 2012
Site-specific recombinases have been harnessed for a variety of genetic manipulations involving the gain, loss, or rearrangement of genomic DNA in a variety of organisms. The enzymes have been further exploited in the model eukaryote Saccharomyces cerevisiae for mechanistic studies involving chromosomal context. In these cases, a chromosomal element of interest is converted into a DNA circle within living cells, thereby uncoupling the element from neighboring regulatory sequences, obligatory chromosomal events, and other context-dependent effects that could alter or mask intrinsic functions of the element.
View Article and Find Full Text PDFThe posttranslational addition of palmitate to cysteines occurs ubiquitously in eukaryotic cells, where it functions in anchoring target proteins to membranes and in vesicular trafficking. Here we show that the Saccharomyces cerevisiae palmitoyltransferase Pfa4 enhanced heterochromatin formation at the cryptic mating-type loci HMR and HML via Rif1, a telomere regulatory protein. Acylated Rif1 was detected in extracts from wild-type but not pfa4Δ mutant cells.
View Article and Find Full Text PDFThe organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation.
View Article and Find Full Text PDFThe protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains.
View Article and Find Full Text PDFPersistent DNA double-strand breaks and telomeres represent genomic hazards, as they can instigate inappropriate repair reactions. Two recent papers by Oza and colleagues (pp. 912-917) and Schober and colleagues (pp.
View Article and Find Full Text PDFCondensin and cohesin are loaded onto yeast chromosomes by a common mechanism at RNA polymerase III transcribed genes. Whereas cohesin translocates from these loading sites to mediate cohesion at secondary locations, condensin remains, bringing distant sites together into clusters.
View Article and Find Full Text PDFThe yeast Sir2/3/4 complex forms a heterochromatin-like structure that represses transcription. The proteins nucleate at silencers and spread distally, utilizing the Sir2 NAD(+)-dependent histone deacetylase activity and the affinity of Sir3/4 for deacetylated histone tails. A by-product of the Sir2 reaction, O-acetyl-ADP-ribose (OAADPr), is thought to aid spreading by binding one of the Sir proteins.
View Article and Find Full Text PDFGene regulation involves long-range communication between silencers, enhancers, and promoters. In Saccharomyces cerevisiae, silencers flank transcriptionally repressed genes to mediate regional silencing. Silencers recruit the Sir proteins, which then spread along chromatin to encompass the entire silenced domain.
View Article and Find Full Text PDFThe 32 telomeres in the budding yeast genome cluster in three to seven perinuclear foci. Although individual telomeres and telomeric foci are in constant motion, preferential juxtaposition of some telomeres has been scored. To examine the principles that guide such long-range interactions, we differentially tagged pairs of chromosome ends and developed an automated three-dimensional measuring tool that determines distances between two telomeres.
View Article and Find Full Text PDFDNA replication generates sister chromatid pairs that are bound to one another until anaphase onset. The process, termed sister chromatid cohesion, requires the multisubunit cohesin complex that resides at centromeres and sites where genes converge. At the HMR mating-type locus of budding yeast, cohesin associates with a heterochromatin-like structure known as silent chromatin.
View Article and Find Full Text PDFSir2 and Hst1 are NAD(+)-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes.
View Article and Find Full Text PDFEukaryotic DNA replication produces sister chromatids that are linked together until anaphase by cohesin, a ring-shaped protein complex that is thought to act by embracing both chromatids. Cohesin is enriched at centromeres, as well as discrete sites along chromosome arms where transcription positions the complex between convergent gene pairs. A relationship between cohesin and Sir-mediated transcriptional silencing has also begun to emerge.
View Article and Find Full Text PDFThe positioning of chromosomal domains within interphase nuclei is thought to contribute to establishment and maintenance of epigenetic control. Using GFP-tagged chromosomal domains, LexA-fusion targeting and live microscopy, we investigated mechanisms through which chromatin can be anchored to the nuclear envelope (NE). We find that a subdomain of the silencing information regulator Sir4 (Sir4(PAD)) and yKu80 are sufficient to tether a chromatin region to the nuclear periphery, independently of their silencing function.
View Article and Find Full Text PDFEpigenetic mechanisms silence the HM mating-type loci in budding yeast. These loci are tightly linked to telomeres, which are also repressed and held together in clusters at the nuclear periphery, much like mammalian heterochromatin. Yeast telomere anchoring can occur in the absence of silent chromatin through the DNA end binding factor Ku.
View Article and Find Full Text PDFA targeted silencing screen was performed to identify yeast proteins that, when tethered to a telomere, suppress a telomeric silencing defect caused by truncation of Rap1. A previously uncharacterized protein, Esc1 (establishes silent chromatin), was recovered, in addition to well-characterized proteins Rap1, Sir1, and Rad7. Telomeric silencing was slightly decreased in Deltaesc1 mutants, but silencing of the HM loci was unaffected.
View Article and Find Full Text PDF