The addition of water is used to past by internal post-curing of hardening cement. Hydration and curing of cementitious are widely identified by non-destructive H nuclear magnetic resonance (NMR) measurements of transverse relaxation time and self-diffusion. However, those non-destructive analytical methodologies do not give a truly chemical characterization of the cement matrix during the hydration and curing process.
View Article and Find Full Text PDFThe characterization of organic compounds in polluted matrices by eco-friendly three-dimensional (3D) fluorescence spectroscopy coupled with chemometric algorithms constitutes a powerful alternative to the separation techniques conventionally used. However, the systematic presence of Rayleigh and Raman scattering signals in the excitation-emission matrices (EEMs) complicates the spectral decomposition via PARAllel FACtor analysis (PARAFAC) due to the nontrilinear structure of these signals. Likewise, the specific problem of selectivity in spectroscopy for unexpected chemical components in a complex sample may render its chemical interpretation difficult at first glance.
View Article and Find Full Text PDFToxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO nanoparticles (TiONPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiONPs.
View Article and Find Full Text PDFAtomic Force Microscopy (AFM) is a powerful technique for the measurement of mechanical properties of individual cells in two ( × ) or three ( × × time) dimensions. The instrumental progress makes it currently possible to generate a large amount of data in a relatively short time, which is particularly true for AFM operating in so-called PeakForce tapping mode (Bruker corporation). The latter corresponds to an AFM probe that periodically hits the sample surface while the pico-newton level interaction force is recorded from cantilever deflection.
View Article and Find Full Text PDFInfrared spectroscopy is a rapid, easy-to-operate, label-free and therefore cost-effective technique. Many studies performed on biofluids (eg, serum, plasma, urine, sputum, bile and cerebrospinal fluid) have demonstrated its promising application as a clinical diagnostic tool. Given all these characteristics, infrared spectroscopy appears to be an ideal candidate to be implemented into the clinics.
View Article and Find Full Text PDFMutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants.
View Article and Find Full Text PDFAn important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different.
View Article and Find Full Text PDFThe increasing interest in nanoscience in many research fields like physics, chemistry, and biology, including the environmental fate of the produced nano-objects, requires instrumental improvements to address the sub-micrometric analysis challenges. The originality of our approach is to use both the super-resolution concept and multivariate curve resolution (MCR-ALS) algorithm in confocal Raman imaging to surmount its instrumental limits and to characterize chemical components of atmospheric aerosols at the level of the individual particles. We demonstrate the possibility to go beyond the diffraction limit with this algorithmic approach.
View Article and Find Full Text PDFChemical imaging systems help to solve many challenges in various scientific fields. Able to deliver rapid spatial and chemical information, modern infrared spectrometers using Focal Plane Array detectors (FPA) are of great interest. Considering conventional infrared spectrometers with a single element detector, we can consider that the diffraction-limited spatial resolution is more or less equal to the wavelength of the light (i.
View Article and Find Full Text PDF