Publications by authors named "Marc O Warmoes"

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved gene. Here, we generated morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs.

View Article and Find Full Text PDF

We have previously reported that pathogenic variants in a key metabolite repair enzyme NAXD cause a lethal neurodegenerative condition triggered by episodes of fever in young children. However, the clinical and genetic spectrum of NAXD deficiency is broadening as our understanding of the disease expands and as more cases are identified. Here, we report the oldest known individual succumbing to NAXD-related neurometabolic crisis, at 32 years of age.

View Article and Find Full Text PDF

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant ( = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of , a species of mucin-degrading bacteria ( = 0.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies the need for new, noninvasive biomarkers to detect hepatocellular carcinoma (HCC) in patients with cirrhosis, focusing on exosomes and their lipid content.
  • Researchers analyzed plasma exosomes from 72 cirrhotic patients, discovering 2,864 lipid species, with distinct lipid profiles observed between HCC and non-HCC patients.
  • Key lipid classes were found to be significantly enriched or depleted in HCC exosomes, suggesting potential biomarkers for early diagnosis and insights into the metabolic changes associated with tumor development.
View Article and Find Full Text PDF

Background: Hispanics in South Texas have high rates of hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Liver fibrosis severity is the strongest predictive factor of NAFLD progression to HCC. We examined the association between free fatty acids (FA) and advanced liver fibrosis or HCC in this population.

View Article and Find Full Text PDF

T cells undergo metabolic rewiring to meet their bioenergetic, biosynthetic and redox demands following antigen stimulation. To fulfil these needs, effector T cells must adapt to fluctuations in environmental nutrient levels at sites of infection and inflammation. Here, we show that effector T cells can utilize inosine, as an alternative substrate, to support cell growth and function in the absence of glucose in vitro.

View Article and Find Full Text PDF

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear.

View Article and Find Full Text PDF

Exposure to ambient air particulate matter (PM) is well established as a risk factor for cardiovascular and pulmonary disease. Both epidemiologic and controlled exposure studies in humans and animals have demonstrated an association between air pollution exposure and metabolic disorders such as diabetes. Given the central role of the liver in peripheral glucose homeostasis, we exposed mice to filtered air or PM for 16 weeks and examined its effect on hepatic metabolic pathways using stable isotope resolved metabolomics (SIRM) following a bolus of C-glucose.

View Article and Find Full Text PDF

The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo.

View Article and Find Full Text PDF

Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals.

View Article and Find Full Text PDF

Delivering isotopic tracers for metabolic studies in rodents without overt stress is challenging. Current methods achieve low label enrichment in proteins and lipids. Here, we report noninvasive introduction of C-glucose via a stress-free, ad libitum liquid diet.

View Article and Find Full Text PDF

During the progression of pancreatic ductal adenocarcinoma (PDAC), heterogeneous subclonal populations emerge that drive primary tumor growth, regional spread, distant metastasis, and patient death. However, the genetics of metastases largely reflects that of the primary tumor in untreated patients, and PDAC driver mutations are shared by all subclones. This raises the possibility that an epigenetic process might operate during metastasis.

View Article and Find Full Text PDF

CD4 effector T cells (T cells) and regulatory T cells (T cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for T cell proliferation and inflammatory function, the mechanisms that regulate T cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote T cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1.

View Article and Find Full Text PDF

Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription.

View Article and Find Full Text PDF

Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME.

View Article and Find Full Text PDF

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct.

View Article and Find Full Text PDF

Rapid advances in mass spectrometry have allowed for estimates of absolute concentrations across entire proteomes, permitting the interrogation of many important biological questions. Here, we focus on a quantitative aspect of human cancer cell metabolism that has been limited by a paucity of available data on the abundance of metabolic enzymes. We integrate data from recent measurements of absolute protein concentration to analyze the statistics of protein abundance across the human metabolic network.

View Article and Find Full Text PDF

Upregulated glycolysis, both in normoxic and hypoxic environments, is a nearly universal trait of cancer cells. The enormous difference in glucose metabolism offers a target for therapeutic intervention with a potentially low toxicity profile. The past decade has seen a steep rise in the development and clinical assessment of small molecules that target glycolysis.

View Article and Find Full Text PDF

Cancer cells adapt their metabolism to support proliferation and survival. A hallmark of cancer, this alteration is characterized by dysfunctional metabolic enzymes, changes in nutrient availability, tumor microenvironment and oncogenic mutations. Metabolic rewiring in cancer is tightly connected to changes at the epigenetic level.

View Article and Find Full Text PDF

Background: SDS-PAGE followed by in-gel digestion (IGD) is a popular workflow in mass spectrometry-based proteomics. In GeLC-MS/MS, a protein lysate of a biological sample is separated by SDS-PAGE and each gel lane is sliced in 5-20 slices which, after IGD, are analyzed by LC-MS/MS. The database search results for all slices of a biological sample are combined yielding global protein identification and quantification for each sample.

View Article and Find Full Text PDF

Purpose: Early detection of colorectal cancer (CRC) and its precursor lesions is an effective approach to reduce CRC mortality rates. This study aimed to identify novel protein biomarkers for the early diagnosis of CRC.

Experimental Design: Proximal fluids are a rich source of candidate biomarkers as they contain high concentrations of tissue-derived proteins.

View Article and Find Full Text PDF

Patients with carcinoma of unknown primary (CUP) present with metastatic disease for which the primary site cannot be found, despite extensive standard investigation. Here, we describe the development and implementation of the first clinically available microarray-based test for this cancer type (CUPPrint), based on 633 individual tumors representing 30 carcinoma and 17 noncarcinoma classes. Tissue of origin prediction for either fresh frozen or paraffin-embedded tumor samples is achieved with the use of a custom 8-pack 1.

View Article and Find Full Text PDF

Purpose: Patients with adenocarcinoma of unknown primary origin (ACUP) constitute approximately 4% of all malignancies. For effective treatment of these patients, it is considered optimal to identify the primary tumor origins. Currently, the success rate of the diagnostic work-up is only 20% to 30%.

View Article and Find Full Text PDF