Publications by authors named "Marc O Heuschkel"

Engineered 3D neural tissues made of neurons and glial cells derived from human induced pluripotent stem cells (hiPSC) are among the most promising tools in drug discovery and neurotoxicology. They represent a cheaper, faster, and more ethical alternative to animal testing that will likely close the gap between animal models and human clinical trials. Micro-Electrode Array (MEA) technology is known to provide an assessment of compound effects on neural 2D cell cultures and acute tissue preparations by real-time, non-invasive, and long-lasting electrophysiological monitoring of spontaneous and evoked neuronal activity.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is caused by a wide range of physical events and can induce an even larger spectrum of short- to long-term pathophysiologies. Neuroscientists have relied on animal models to understand the relationship between mechanical damages and functional alterations of neural cells. These and animal-based models represent important approaches to mimic traumas on whole brains or organized brain structures but are not fully representative of pathologies occurring after traumas on human brain parenchyma.

View Article and Find Full Text PDF

In this paper we present SpikeOnChip, a custom embedded platform for neuronal activity recording and online analysis. The SpikeOnChip platform was developed in the context of automated drug testing and toxicology assessments on neural tissue made from human induced pluripotent stem cells. The system was developed with the following goals: to be small, autonomous and low power, to handle micro-electrode arrays with up to 256 electrodes, to reduce the amount of data generated from the recording, to be able to do computation during acquisition, and to be customizable.

View Article and Find Full Text PDF

Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum of possibilities to tackle this issue. Nevertheless, despite the advancements in this field, further improvements in the fabrication of conductive hydrogel-based electrodes are still required.

View Article and Find Full Text PDF

The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension.

View Article and Find Full Text PDF

There is increasing interest in interfacing dissociated neuronal cultures with planar multielectrode arrays (MEAs) for the study of the dynamics of neuronal networks. Here we report on the successful use of three-dimensional tip electrode arrays (3D MEAs), originally developed for use with brain slices, for recording and stimulation of cultured neurons. We observed that many neurons grew directly on protruding electrode surface, appearing to make excellent contact.

View Article and Find Full Text PDF

Several multi-electrode array devices integrating planar metal electrodes were designed in the past 30 years for extracellular stimulation and recording from cultured neuronal cells and organotypic brain slices. However, these devices are not well suited for recordings from acute brain slice preparations due to a dead cell layer at the tissue slice border that appears during the cutting procedure. To overcome this problem, we propose the use of protruding 3D electrodes, i.

View Article and Find Full Text PDF