The synthesis atmosphere plays a fundamental role in determining the physicochemical properties and electrochemical performance of NMC811 cathode materials used in lithium-ion batteries. This study investigates the effect of carbonate impurities generated during synthesis by comparing three distinct samples: NMC811 calcined in ambient air, NMC811 calcined in synthetic air to mitigate carbonate formation, and NMC811 initially calcined in ambient air followed by annealing in synthetic air to eliminate carbonate species. Physicochemical characterization through XRD, SEM, FTIR, and TGA techniques revealed noticeable differences in the structural and chemical properties among the samples.
View Article and Find Full Text PDFLithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on LiNiMnO as a lithium-rich, cobalt-free layered oxide.
View Article and Find Full Text PDF