Publications by authors named "Marc N Offman"

To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.

View Article and Find Full Text PDF

Recently, two studies were published that examined the structure of the acid-β-glucosidase N370S mutant, the most common mutant that causes Gaucher disease. One study used the experimental tool of X-ray crystallography, and the other utilized molecular dynamics (MD). The two studies reinforced each other through the similarities in their findings, but each approach also added some unique information.

View Article and Find Full Text PDF

Using proteins in a therapeutic context often requires engineering to modify functionality and enhance efficacy. We have previously reported that the therapeutic antileukemic protein macromolecule Escherichia coli L-asparaginase is degraded by leukemic lysosomal cysteine proteases. In the present study, we successfully engineered L-asparaginase to resist proteolytic cleavage and at the same time improve activity.

View Article and Find Full Text PDF

Gaucher disease is caused by the defective activity of the lysosomal hydrolase, glucosylceramidase. Although the x-ray structure of wild type glucosylceramidase has been resolved, little is known about the structural features of any of the >200 mutations. Various treatments for Gaucher disease are available, including enzyme replacement and chaperone therapies.

View Article and Find Full Text PDF

l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative.

View Article and Find Full Text PDF

Background: Automatic protein modelling pipelines are becoming ever more accurate; this has come hand in hand with an increasingly complicated interplay between all components involved. Nevertheless, there are still potential improvements to be made in template selection, refinement and protein model selection.

Results: In the context of an automatic modelling pipeline, we analysed each step separately, revealing several non-intuitive trends and explored a new strategy for protein conformation sampling using Genetic Algorithms (GA).

View Article and Find Full Text PDF

Motivation: A wide variety of methods for the construction of an atomic model for a given amino acid sequence are known, the more accurate being those that use experimentally determined structures as templates. However, far fewer methods are aimed at refining these models. The approach presented here carefully blends models created by several different means, in an attempt to combine the good quality regions from each into a final, more refined, model.

View Article and Find Full Text PDF

Background: Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions.

View Article and Find Full Text PDF