The protein phosphatase 2 (PP2A) holoenzyme consists of a catalytic subunit, a scaffold subunit, and a regulatory subunit. Based on loss-of-function analysis using PP2A catalytic inhibitors or inhibition via tumor viral antigens, limited studies suggest that PP2A is a putative tumor suppressor. However, PP2A has also been shown to facilitate the activation of oncogenic signaling pathways when associated with specific regulatory subunits.
View Article and Find Full Text PDFThe B″/PR72 family of protein phosphatase 2A (PP2A) is an important PP2A family involved in diverse cellular processes, and uniquely regulated by calcium binding to the regulatory subunit. The PR70 subunit in this family interacts with cell division control 6 (Cdc6), a cell cycle regulator important for control of DNA replication. Here, we report crystal structures of the isolated PR72 and the trimeric PR70 holoenzyme at a resolution of 2.
View Article and Find Full Text PDFPocket proteins negatively regulate transcription of E2F-dependent genes and progression through the G(0)/G(1) transition and the cell cycle restriction point in G(1). Pocket protein repressor activities are inactivated via phosphorylation at multiple Pro-directed Ser/Thr sites by the coordinated action of G(1) and G(1)/S cyclin-dependent kinases. These phosphorylations are reversed by the action of two families of Ser/Thr phosphatases: PP1, which has been implicated in abrupt dephosphorylation of retinoblastoma protein (pRB) in mitosis, and PP2A, which plays a role in an equilibrium that counteracts cyclin-dependent kinase (CDK) action throughout the cell cycle.
View Article and Find Full Text PDFNephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood.
View Article and Find Full Text PDFThe cell division control protein 6 (Cdc6) is essential for formation of pre-replication complexes at origins of DNA replication. Phosphorylation of Cdc6 by cyclin-dependent kinases inhibits ubiquitination of Cdc6 by APC/C(cdh1) and degradation by the proteasome. Experiments described here show that the PR70 member of the PPP2R3 family of regulatory subunits targets protein phosphatase 2A (PP2A) to Cdc6.
View Article and Find Full Text PDFAlthough evidence has suggested that the serine/threonine protein phosphatase 2A (PP2A) might be a tumor suppressor protein, it has been difficult to pin down its role in tumor suppression because it acts in a wide variety of signaling pathways. Recent findings, including work in this issue by Junttila et al. (2007), provide convincing evidence that suppression of PP2A activity cooperates with other oncogenic changes to cause transformation of multiple cell types.
View Article and Find Full Text PDFPhosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is a serine/threonine phosphatase implicated in cancer. Three new crystal structures of PP2A show how it interacts with inhibitory toxins and with one of its regulatory subunits. The structures also explain how specific site mutations may lead to cancer and suggest a novel role for PP2A methylation in the formation of PP2A holoenzymes.
View Article and Find Full Text PDFThe use of RNA interference to knock down protein phosphatases has proven to be a valuable approach to understanding the functions of these enzymes in mammalian cells. Many protein phosphatases exist as multisubunit and multigene families, which has made it difficult to assess their physiological functions using traditional approaches. The ability to selectively knock down specific subunits and individual isoforms with RNA interference has begun to make it possible to determine the contributions of individual phosphatase proteins to cellular signaling.
View Article and Find Full Text PDFMol Cell Proteomics
February 2007
Members of the B56 family of protein phosphatase 2A (PP2A) regulatory subunits play crucial roles in Drosophila cell survival. Distinct functions of two B56 subunits were investigated using a combination of RNA interference, DNA microarrays, and proteomics. RNA interference-mediated knockdown of the B56-1 subunit (PP2A-B') but not the catalytic (mts) or B56-2 subunit (wdb) of PP2A resulted in increased expression of the apoptotic inducers reaper and sickle.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2006
Studies of protein kinases have identified a "gatekeeper" residue, which confers selectivity for binding nucleotides and small-molecule inhibitors. We report that, in the MAP kinase ERK2, mutations at the gatekeeper residue unexpectedly lead to autoactivation due to enhanced autophosphorylation of regulatory Tyr and Thr sites within the activation lip that control kinase activity. This occurs through an intramolecular mechanism, indicating that the gatekeeper residue indirectly constrains flexibility at the activation lip, precluding access of the phosphoacceptor residues to the catalytic base.
View Article and Find Full Text PDFLoss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A).
View Article and Find Full Text PDFMutations of the PPP2R1B gene, which encodes the Abeta scaffolding subunit of serine/threonine protein phosphatase 2A (PP2A), have been identified in several types of cancer including lung and breast carcinoma. One of these mutations results in an alteration of glycine 90 to aspartic acid (G90D), which has been found in both tumor and genomic DNA, raising the possibility that it is associated with an increased risk for cancer. A novel microarray-based technology was used to screen for this single-nucleotide polymorphism in 387 cancer patients and 329 control individuals.
View Article and Find Full Text PDFDevelopments in the field of phosphoproteomics have been fueled by the need simultaneously to monitor many different phosphoproteins within the signaling networks that coordinate responses to changes in the cellular environment. This article presents a brief review of phosphoproteomics with an emphasis on the biological insights that have been derived so far.
View Article and Find Full Text PDFReliable identification of posttranslational modifications is key to understanding various cellular regulatory processes. We describe a tool, InsPecT, to identify posttranslational modifications using tandem mass spectrometry data. InsPecT constructs database filters that proved to be very successful in genomics searches.
View Article and Find Full Text PDFA major goal of the Alliance for Cellular Signaling is to elaborate the components of signal transduction networks in model cell systems, including murine B lymphocytes. Due to the importance of protein phosphorylation in many aspects of cell signaling, the initial efforts have focused on the identification of phosphorylated proteins. In order to identify serine- and threonine-phosphorylated proteins on a proteome-wide basis, WEHI-231 cells were treated with calyculin A, a serine/threonine phosphatase inhibitor, to induce high levels of protein phosphorylation.
View Article and Find Full Text PDFMethods Enzymol
January 2004
Double stranded RNA-mediated RNA interference is an effective method to downregulate the levels of protein phosphatases in Drosophila S2 cells. In many cases, nearly complete ablation of the targeted protein can be achieved. RNAi-mediated knockdown of protein phosphatases is akin to pharmacological inhibition with drugs and can be used to determine the roles of specific protein phosphatases in intact cells.
View Article and Find Full Text PDFThe axonal microtubule stabilizing protein tau is hyperphosphorylated in several neurodegenerative conditions, including Alzheimer's disease, yet the genes that regulate tau phosphorylation are largely unknown. Disabled-1 (Dab1) is a cytoplasmic adapter protein that interacts with apolipoprotein E (ApoE) receptors and controls neuronal positioning during embryonic brain development. We have investigated the role of Dab1 in tau phosphorylation.
View Article and Find Full Text PDFThe Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells--B lymphocytes (the cells of the immune system) and cardiac myocytes--to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.
View Article and Find Full Text PDFRecently it has been shown that the potent apoptotic agent ceramide activates a mitochondrial protein phosphatase 2A (PP2A) and promotes dephosphorylation of the anti-apoptotic molecule Bcl2 (Ruvolo, P. P., Deng, X.
View Article and Find Full Text PDFIndividual subunits of protein phosphatase 2A (PP2A), protein phosphatase 4, and protein phosphatase 5 were knocked out in Drosophila Schneider 2 cells by using RNA interference. Ablation of either the scaffold (A) or catalytic (C) subunits of PP2A caused the disappearance of all PP2A subunits. Treating cells with double-stranded RNA targeting all four of the Drosophila PP2A regulatory subunits caused the disappearance of both the A and C subunits.
View Article and Find Full Text PDF