The United States (US) Environmental Protection Agency (EPA)'s SPECIATE database contains speciated particulate matter (PM) and volatile organic compound (VOC) emissions profiles. Emissions profiles from anthropogenic combustion, industry, wildfires, and agricultural sources among others are key inputs for creating chemically-resolved emissions inventories for air quality modeling. While the database and its use for air quality modeling are routinely updated and evaluated, this work sets out to systematically prioritize future improvements and communicate speciation data needs to the research community.
View Article and Find Full Text PDFThe goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction.
View Article and Find Full Text PDFEnviron Sci Technol
July 2012
Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
February 2010
The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority.
View Article and Find Full Text PDFA bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E.
View Article and Find Full Text PDFHighly conserved regions are attractive targets for detection and quantitation by PCR, but designing species-specific primer sets can be difficult. Ultimately, almost all primer sets are designed based upon literature searches in public domain databases, such as the National Center for Biotechnology Information (NCBI). Prudence suggests that the researcher needs to evaluate as many sequences as available for designing species-specific PCR primers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2007
Goal, Scope And Background: Reducing occupant exposure to indoor mold is the goal of this research, through the efficacy testing of antimicrobial cleaners. Often mold contaminated building materials are not properly removed, but instead surface cleaners are applied in an attempt to alleviate the problem. The efficacy of antimicrobial cleaners to remove, eliminate or control mold growth on surfaces can easily be tested on non-porous surfaces.
View Article and Find Full Text PDFDue to the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces it is necessary to accurately determine the organisms responsible for these maladies and to identify them in an accurate and timely manner. Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise.
View Article and Find Full Text PDFBecause of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment.
View Article and Find Full Text PDFHistorically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time-consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. The polymerase chain reaction (PCR) has shown great promise in its ability to identify and quantify individual organisms from a mixed culture environment; however, the cost effectiveness of single organism PCR reactions is quickly becoming an issue.
View Article and Find Full Text PDFJ Microbiol Methods
March 2004
Following air sampling fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and Polymerase Chain Reaction (PCR) applications. The methodology described is both rapid and cost effective for use with multiple fungal organisms.
View Article and Find Full Text PDF