Publications by authors named "Marc Melendez"

Optical matter, a transient arrangement formed by the interaction of light with micro/nanoscale objects, provides responsive and highly tunable materials that allow for controlling and manipulating light and/or matter. A combined experimental and theoretical exploration of optical matter is essential to advance our understanding of the phenomenon and potentially design applications. Most studies have focused on nanoparticles composed of a single material (either metallic or dielectric), representing two extreme regimes, one where the gradient force (dielectric) and one where the scattering force (metallic) dominates.

View Article and Find Full Text PDF

Transient Photoluminescence Microscopy (TPLM) allows for the direct visualization of carrier transport in semiconductor materials with sub nanosecond and few nanometer resolution. The technique is based on measuring changes in the spatial distribution of a diffraction limited population of carriers using spatiotemporal detection of the radiative decay of the carriers. The spatial resolution of TPLM is therefore primarily determined by the signal-to-noise-ratio (SNR).

View Article and Find Full Text PDF

Mapping of the spatial and temporal motion of particles inside an optical field is critical for understanding and further improvement of the 3D spatio-temporal control over their optical trapping dynamics. However, it is not trivial to capture the 3D motion, and most imaging systems only capture a 2D projection of the 3D motion, in which the information about the axial movement is not directly available. In this work, we resolve the 3D incorporation trajectories of 200 nm fluorescent polystyrene particles in an optical trapping site under different optical experimental conditions using a recently developed widefield multiplane microscope (imaging volume of 50 × 50 × 4 μm).

View Article and Find Full Text PDF

Halide mixing is one of the most powerful techniques to tune the optical bandgap of metal-halide perovskites. However, halide mixing has commonly been observed to result in phase segregation, which reduces excited-state transport and limits device performance. While the current emphasis lies on the development of strategies to prevent phase segregation, it remains unclear how halide mixing may affect excited-state transport even if phase purity is maintained.

View Article and Find Full Text PDF

Background: Transmission of COVID-19 via salivary aerosol particles generated when using handpieces or ultrasonic scalers is a major concern during the COVID-19 pandemic. The aim of this study was to assess the spread of dental aerosols on patients and dental providers during aerosol-generating dental procedures.

Methods: This pilot study was conducted with one volunteer.

View Article and Find Full Text PDF

The analytical theories derived here for the acoustic load impedance measured by a quartz crystal microbalance (QCM), due to the presence of layers of different types (rigid, elastic, and viscous) immersed in a fluid, display generic properties, such as "vanishing mass" and positive frequency shifts, which have been observed in QCM experiments with soft-matter systems. These phenomena seem to contradict the well-known Sauerbrey relation at the heart of many QCM measurements, but here, we show that they arise as a natural consequence of hydrodynamics. We compare our one-dimensional immersed plate theory with three-dimensional simulations of rigid and flexible submicron-sized suspended spheres and with experimental results for adsorbed micron-sized colloids, which yield a "negative acoustic mass".

View Article and Find Full Text PDF

Two-dimensional layered perovskites are attracting increasing attention as more robust analogues to the conventional three-dimensional metal-halide perovskites for both light harvesting and light emitting applications. However, the impact of the reduced dimensionality on the optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitonic excited state within the two-dimensional plane. Here, we present direct measurements of exciton transport in single-crystalline layered perovskites.

View Article and Find Full Text PDF

Distribution functions for systems in nonequilibrium steady states are usually determined through detailed experiments, both in numerical and real-life settings in the laboratory. However, for a protocol-driven distribution function, it is usually prohibitive to perform such detailed experiments for the entire range of the protocol. In this article we show that distribution functions of nonequilibrium steady states (NESS) evolving under a slowly varying protocol can be accurately obtained from limited data and the closest known detailed state of the system.

View Article and Find Full Text PDF