Electrochemical sensors are part of a diverse and evolving world of chemical sensors that are impacted by high demand and ongoing technological advancements. Electrochemical sensors offer benefits like cost-efficiency, short response time, ease of use, good limit of detection (LOD) and sensitivity, and ease of miniaturization while providing consistent analytical results. These sensors are employed in various fields-such as healthcare and diagnostics, environmental monitoring, and the food industry-to detect bacteria, viruses, heavy metals, pesticides, and more.
View Article and Find Full Text PDFCarbon nanofibers show the advantages of scale effects on electrical and mechanical properties for applications such as aerospace, automotive, and energy, but have to confront the challenge of maximizing the role of scale effects. Here, a method of additive nanostructuring and carbonization of polyacrylonitrile (PAN) jetting for the nano-forming of carbon fibers is developed by understanding the electrostatic submicro-initiation of a PAN jetting, altering the microstructure of PAN-based jetting fibers at the nanoscale and implementing subsequent carbonization of PAN jetting nanofiber. Using this method of additive nanostructuring and carbonization in combination with the radial distribution pattern of shear stress, we find that the conformation of some molecular chains inside the PAN nanofibers is transformed into the zigzag conformation.
View Article and Find Full Text PDFThis study explores the frontiers of microparticle manipulation by introducing an actuator platform for the three-dimensional positioning of microparticles using dielectrophoresis (DEP), a technique known for its selectivity and ease of integration with microtechnology. Leveraging advancements in carbon-based devices due to their biocompatibility and electrochemical stability, our work extends the application of DEP from two-dimensional constraints to precise 3D positioning within microvolumes, employing a photolithography-based fabrication process known as Carbon-MEMS technology (C-MEMS). We present the design, finite element simulation, fabrication, and testing of this platform, which utilizes a unique combination of planar and 3D carbon microelectrodes individually addressable on a transparent substrate.
View Article and Find Full Text PDFDeveloping successful nanomedicine hinges on regulating nanoparticle surface interactions within biological systems, particularly in intravenous nanotherapeutics. We harnessed the surface interactions of gold nanoparticles (AuNPs) with serum proteins, incorporating a γ-globulin (γG) hard surface corona and chemically conjugating Doxorubicin to create an innovative hybrid anticancer nanobioconjugate, Dox-γG-AuNPs. γG (with an isoelectric point of ~7.
View Article and Find Full Text PDFThe limit of detection (LOD), speed, and cost of crucial COVID-19 diagnostic tools, including lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reactions (PCR), have all improved because of the financial and governmental support for the epidemic. The most notable improvement in overall efficiency among them has been seen with PCR. Its significance for human health increased during the COVID-19 pandemic, when it emerged as the commonly used approach for identifying the virus.
View Article and Find Full Text PDFTroponin is the American College of Cardiology and American Heart Association preferred biomarker for diagnosing acute myocardial infarction (MI). We provide a modeling framework for high sensitivity cardiac Troponin I (hs-cTnI) detection in chromatographic immunoassays (flow displacement mode) with an analytical limit of detection, i.e.
View Article and Find Full Text PDFTo produce a three-dimensional micro/nanocarbon structure, a manufacturing design technique for sub-10 nm carbon fiber arrays on three-dimensional carbon micropillars has been developed; the method involves initiating electrostatic jetting, forming submicron-to-nanoscale PAN-based fibers, and maximizing the shrinkage from polyacrylonitrile (PAN)-based fibers to carbon fibers. Nanoforming and nanodepositing methods for polyacrylonitrile-based jet fibers as precursors of carbon fibers are proposed for the processing design of electrostatic jet initiation and for the forming design of submicron-to-nanoscale PAN-based fibers by establishing and analyzing mathematical models that include the diameter and tensile stress values of jet fibers and the electric field intensity values on the surfaces of carbon micropillars. In accordance with these methods, an array of jet fibers with diameters of ~80 nm is experimentally formed based on the thinning of the electrospinning fluid on top of a dispensing needle, the poking of drum into an electrospinning droplet, and the controlling of the needle-drum distance.
View Article and Find Full Text PDFBiopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels.
View Article and Find Full Text PDFLimit of detection (LOD), speed, and cost for some of the most important diagnostic tools, i.e., lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR), all benefited from both the financial and regulatory support brought about by the pandemic.
View Article and Find Full Text PDFSensors (Basel)
February 2023
Numerous immunoassays have been successfully integrated on disc-based centrifugal platforms (CDs) over the last 20 years. These CD devices can be used as portable point-of-care (POC) platforms with sample-to-answer capabilities where bodily fluids such as whole blood can be used as samples directly without pre-processing. In order to use whole blood as a sample on CDs, centrifugation is used to separate red blood cells from plasma on CDs.
View Article and Find Full Text PDFMicro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height.
View Article and Find Full Text PDFCentrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex processes to transfer onto the small disc platform that previously were carried out by individual expensive laboratory equipment requiring trained personnel.
View Article and Find Full Text PDFMany advanced microfluidic Lab-on-disc (LOD) devices require an on-board power supply for powering active components. LODs with an on-board electrical power supply are called electrified-LODs (eLODs) and are the subject of the present review. This survey comprises two main parts.
View Article and Find Full Text PDFThe fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking.
View Article and Find Full Text PDFHeterogeneous immunoassays (HI) are an invaluable tool for biomarker detection and remain an ideal candidate for microfluidic point-of-care diagnostics. However, automating and controlling sustained fluid flow from benchtop to microfluidics for the HI reaction during the extended sample incubation step, remains difficult to implement; this leads to challenges for assay integration and assay result interpretation. To address these issues, we investigated the liquid reciprocation process on a microfluidic centrifugal disc (CD) to generate continuous, bidirectional fluid flow using only a rotating motor.
View Article and Find Full Text PDFNowadays, centrifugal microfluidic platforms are finding wider acceptance for implementing point-of-care assays due to the simplicity of the controls, the versatility of the fluidic operations, and the ability to create a self-enclosed system, thus minimizing the risk of contamination for either the sample or surroundings. Despite these advantages, one of the inherent weaknesses of CD microfluidics is that all the sequential fluidic chambers and channels must be positioned radially since the centrifugal force acts from the center of the disk outward. Implementation of schemes where the liquid can be rerouted from the disk periphery to the disk center would significantly increase the utility of CD platforms and increase the rational utilization of the real estate on the disk.
View Article and Find Full Text PDFCompact disc (CD)-based centrifugal microfluidics is an increasingly popular choice for academic and commercial applications as it enables a portable platform for biological and chemical assays. By rationally designing microfluidic conduits and programming the disc's rotational speeds and accelerations, one can reliably control propulsion, metering, and valving operations. Valves that either stop fluid flow or allow it to proceed are critical components of a CD platform.
View Article and Find Full Text PDFCrystalline carbon nanowire arrays were fabricated taking advantage of near-field electrospinning and stress decyanation. A novel fabrication method for carbon nanowires with radii ranging from ~2.15 µm down to ~25 nm was developed based on implementing nitrogen pretreatment on the silica surface and then aligning polymer nanofibers during near-field electrospinning at an ultralow voltage.
View Article and Find Full Text PDFIn this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra.
View Article and Find Full Text PDFIn the development of glassy carbon fiber toward graphene fiber, highly crystalline carbon wires have attracted attention. More importantly, a charge cannot be accommodated at the surface of highly oriented pyrolytic graphite as it would be in a metal. In this work, we demonstrate that enhancing the decyanation reaction rate and reducing the nanowire diameter to below the crystallite size (≲50 nm) greatly contribute to the microstructure transformation of carbon from low crystalline glassy carbon to crystalline micro-structure.
View Article and Find Full Text PDFMicromachines (Basel)
September 2021
It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices.
View Article and Find Full Text PDFIn this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N-) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz-30 MHz) at a fixed amplitude of 7 V.
View Article and Find Full Text PDFMulti-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures.
View Article and Find Full Text PDF: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a particular coronavirus strain responsible for the coronavirus disease 2019 (COVID-19), accounting for more than 3.1 million deaths worldwide. Several health-related strategies have been successfully developed to contain the rapidly-spreading virus across the globe, toward reduction of both disease burden and infection rates.
View Article and Find Full Text PDF