Publications by authors named "Marc Llaguno"

Mitochondrial ATP synthase is vital not only for cellular energy production but also for energy dissipation and cell death. ATP synthase c-ring was suggested to house the leak channel of mitochondrial permeability transition (mPT), which activates during excitotoxic ischemic insult. In this present study, we purified human c-ring from both eukaryotic and prokaryotic hosts to biophysically characterize its channel activity.

View Article and Find Full Text PDF

Purified mitochondrial ATP synthase has been shown to form Ca-activated, large conductance channel activity similar to that of mitochondrial megachannel (MMC) or mitochondrial permeability transition pore (mPTP) but the oligomeric state required for channel formation is being debated. We reconstitute purified monomeric ATP synthase from porcine heart mitochondria into small unilamellar vesicles (SUVs) with the lipid composition of mitochondrial inner membrane and analyze its oligomeric state by electron cryomicroscopy. The cryo-EM density map reveals the presence of a single ATP synthase monomer with no density seen for a second molecule tilted at an 86 angle relative to the first.

View Article and Find Full Text PDF

The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance.

View Article and Find Full Text PDF

Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition.

View Article and Find Full Text PDF

Many biological complexes are naturally low in abundance and pose a significant challenge to their structural and functional studies. Here we describe a new method that utilizes strong oxidation and chemical linkage to introduce a high density of bioactive ligands onto nanometer-thick carbon films and enable selective enrichment of individual macromolecular complexes at subnanogram levels. The introduced ligands are physically separated.

View Article and Find Full Text PDF

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution.

View Article and Find Full Text PDF

The roles that lipids play in endocytosis are the subject of debate. Using electrical and imaging methods, we describe massive endocytosis (MEND) in baby hamster kidney (BHK) and HEK293 cells when the outer plasma membrane monolayer is perturbed by the nonionic detergents, Triton X-100 (TX100) and NP-40. Some alkane detergents, the amphipathic drugs, edelfosine and tamoxifen, and the phospholipase inhibitor, U73122, are also effective.

View Article and Find Full Text PDF

We describe rapid massive endocytosis (MEND) of >50% of the plasmalemma in baby hamster kidney (BHK) and HEK293 cells in response to large Ca transients. Constitutively expressed Na/Ca exchangers (NCX1) are used to generate Ca transients, whereas capacitance recording and a membrane tracer dye, FM 4-64, are used to monitor endocytosis. With high cytoplasmic adenosine triphosphate (ATP; >5 mM), Ca influx causes exocytosis followed by MEND.

View Article and Find Full Text PDF