Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing us to measure this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations.
View Article and Find Full Text PDFThe controlled rupture of a core-shell capsule and the timely release of encapsulated materials are essential steps of the efficient design of such carriers. The mechanical and physico-chemical properties of their shells (or membranes) mainly govern the evolution of such systems under stress and notably the link between the dynamics of rupture and the mechanical properties. This issue is addressed considering weakly cohesive shells made by the interfacial complexation of Chitosan and PFacid in a planar extensional flow.
View Article and Find Full Text PDFControlling the assembly of polyelectrolytes and surfactant at liquid-liquid interfaces offers new ways to fabricate soft materials with specific physical properties. However, little is known of the relationships between the kinetics of interfacial assembly, structural and rheological properties of such interfaces. We studied the kinetics at water-oil interface of the assembly of a positively charged biopolymer, chitosan, with an anionic fatty acid using a multi-scale approach.
View Article and Find Full Text PDFThe investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage neural network architecture for analyzing fine shape details from confocal microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease, namely hereditary spherocytosis.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized.
View Article and Find Full Text PDFVesicles are micrometric soft particles whose membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles, is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details.
View Article and Find Full Text PDFGlutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells.
View Article and Find Full Text PDFTuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
September 2017
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place.
View Article and Find Full Text PDFControlling the deformation of microcapsules and capsules is essential in numerous biomedical applications. The mechanical properties of the membrane of microcapsules made of cross-linked human serum albumin (HSA) are revealed by two complementary experiments in the linear elastic regime. The first provides the surfacic shear elastic modulus Gs by the study of small deformations of a single capsule trapped in an elongational flow: Gs varies from 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2013
Destabilization of soft interfaces into thin cylindrical filaments under external stresses is ubiquitous and is generally the first step toward breakup. We show that such filaments, called tethers, emerge from a vesicle subjected to gravity. Contrary to the pendant drop experiment, we demonstrate that the bending rigidity, a specific membrane property of vesicles, ensures the tethers reach a stationary state.
View Article and Find Full Text PDFWe have investigated the effect of cholesterol and two abundant phytosterols (sitosterol and stigmasterol) on the voltage-dependent anion-selective channel (VDAC) purified from mitochondria of bean seeds (Phaseolus coccineus). These sterols differ by the degree of freedom of their lateral chain. We show that VDAC displays sensitivity to the lipid-sterol ratio and to the type of sterol found in the membrane.
View Article and Find Full Text PDFThe competition between adhesion and external flow to unbind settled vesicles from substrates is investigated. An experimental setup is developed to apply a hydrodynamic pulling force in the range of a few piconewtons to a vesicle with retained axisymmetry. In the limit of a small excess of membrane area, vesicles are found to transit during unbinding from a process of fluid film thickening at constant contact area to a finite-time process of contact radius drop to zero with an exponent 1/2.
View Article and Find Full Text PDFFucoid zygotes are model cells for the study of symmetry breaking in plants. After fertilization, their initial spherical symmetry reduces to an axial symmetry, even in the absence of any external cue. This indicates that zygotes have an intrinsic ability to break symmetry in a way that is solely dependent on their internal biochemical and/or biophysical state.
View Article and Find Full Text PDFStationary spatiotemporal pattern formation emerging from the electric activity of biological membranes is widespread in cells and tissues. A known key instability comes from the self-aggregation of membrane channels. In a two-dimensional geometry, we show that the primary pattern undergoes four secondary instabilities: Eckhaus-like, period-halving, drift instabilities, and a global oscillation.
View Article and Find Full Text PDF