Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix.
View Article and Find Full Text PDFIndispensable amino acid (IAA) composition and standardized ileal digestibility (SID) of five animal- and 12 plant-based proteins were used to calculate their respective Digestible Indispensable Amino Score (DIAAS) according to the three age categories defined by the Food and Agriculture Organization (FAO). Mean IAA content and mean SID obtained from each protein dataset were subsequently used to simulate optimal nutritional quality of protein mixtures. Datasets revealed considerable variation in DIAAS within the same protein source and among different protein sources.
View Article and Find Full Text PDFBackground: The thermal unfolding and rheological properties of patatin gels were compared with those of commonly used proteins (β-lactoglobulin, ovalbumin, glycinin).
Results: A significant difference between these proteins was observed in both the denaturation temperature (59 °C for patatin; about 20 °C lower than the other proteins) and the onset temperature of gel formation (50-60 °C, compared to 70-85 °C for the other proteins). At low ionic strength the minimal concentration was only 6% (w/v) for patatin, compared to 8-11% for the other proteins.
Rhizobial lipopolysaccharide (LPS) is required to establish an effective symbiosis with its host plant. An exo5 mutant of Rhizobium leguminosarum RBL5523, strain RBL5808, is defective in UDP-glucose (Glc) dehydrogenase that converts UDP-Glc to UDP-glucuronic acid (GlcA). This mutant is unable to synthesize either UDP-GlcA or UDP-galacturonic acid (GalA) and is unable to synthesize extracellular and capsular polysaccharides, lacks GalA in its LPS and is defective in symbiosis (Laus MC, Logman TJ, van Brussel AAN, Carlson RW, Azadi P, Gao MY, Kijne JW.
View Article and Find Full Text PDFRhizobium bacteria produce different surface polysaccharides which are either secreted in the growth medium or contribute to a capsule surrounding the cell. Here, we describe isolation and partial characterization of a novel high molecular weight surface polysaccharide from a strain of Rhizobium leguminosarum that nodulates Pisum sativum (pea) and Vicia sativa (vetch) roots. Carbohydrate analysis showed that the polysaccharide consists for 95% of mannose and glucose, with minor amounts of galactose and rhamnose.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2005
Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected.
View Article and Find Full Text PDFAnalysis of two exopolysaccharide-deficient mutants of Rhizobium leguminosarum, RBL5808 and RBL5812, revealed independent Tn5 transposon integrations in a single gene, designated exo5. As judged from structural and functional homology, this gene encodes a UDP-glucose dehydrogenase responsible for the oxidation of UDP-glucose to UDP-glucuronic acid. A mutation in exo5 affects all glucuronic acid-containing polysaccharides and, consequently, all galacturonic acid-containing polysaccharides.
View Article and Find Full Text PDF