Introduction: Molecular interactions in prostatic fluid are of biological interest and may affect MRI and MRS of the prostate. We investigated the existence of interactions between the major components of this fluid: spermine, citrate and myoinositol, metal ions, including zinc, and proteins.
Materials And Methods: Solutions of 90 mM citrate, 18 mM spermine and 6 mM myo-inositol, mimicking expressed prostatic fluid, were investigated by 1H NMR using changes in T2 relaxation and chemical shift as markers for interactions.
In the dissolution-dynamic nuclear polarization technique, molecular probes with long T 1s are preferred. 13C nuclei of small molecules with no directly bonded protons or sp(3 13)C nuclei with proton positions substituted by deuterons may fulfill this requirement. The T 1 determination of such new molecular probes is crucial for the success of the hyperpolarized observation.
View Article and Find Full Text PDFPurpose: Accurate metabolite and protein quantification in blood plasma and other body fluids from one single NMR measurement, allowing for improved quantitative metabolic profiling and better assessment of metabolite-protein interactions.
Theory And Methods: The total protein concentration is derived from the common chemical-shift changes-caused by protein-induced bulk magnetic susceptibility (BMS)-measured on well-accessible and exchange-free metabolite resonances. These BMS shifts are simply obtained by external referencing with respect to 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt in a coaxial insert.
Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum Albumin (HSA) is the main plasma protein (∼60% of all plasma protein) and responsible for the transport of endogenous (e.
View Article and Find Full Text PDF