The p53 tumor suppressor protein performs a number of cellular functions, ranging from the induction of cell cycle arrest and apoptosis to effects on DNA repair. Modulating p53 activity with Mdm2 inhibitors is a promising approach for treating cancer; however, it is presently unclear how the in vivo application of Mdm2 inhibitors impact the myriad processes orchestrated by p53. Since approximately half of all colon cancers (predominately cancers with microsatellite instability) are p53-normal, we assessed the anticancer activity of the Mdm2 inhibitor Nutlin-3 in the mouse azoxymethane (AOM) colon cancer model, in which p53 remains wild type.
View Article and Find Full Text PDFMdm2 inhibitors represent a promising class of p53 activating compounds that may be useful in cancer treatment and prevention. However, the consequences of pharmacological p53 activation are not entirely clear. We observed that Nutlin-3 triggered a DNA damage response in azoxymethane-induced mouse AJ02-NM(0) colon cancer cells, characterized by the phosphorylation of H2AX (at Ser-139) and p53 (at Ser-15).
View Article and Find Full Text PDF