Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability.
View Article and Find Full Text PDFNon-viral transfection reagents are continuously being developed in attempt to replace viral vectors. Among those non-viral vectors, dendrimers have gained increasing interest due to their unique molecular structure and multivalency. However, more improvements are still needed to achieve higher efficacy and lower toxicity.
View Article and Find Full Text PDFTransfecting nucleic acids into various cells is a key procedure in biological research also envisioned for therapeutic applications. In our effort to obtain simple reagents that would be readily accessible from commercial building blocks, we recently reported peptide dendrimers as single component siRNA transfection reagents accessible in pure form by solid-phase peptide synthesis. Here, we extend our studies of these dendrimers by identifying analogs bearing a coumarin or BODIPY fluorescent label in their core and displaying comparable siRNA transfection efficiencies, pH dependent aggregation, siRNA binding, and secondary structures.
View Article and Find Full Text PDFTransfecting nucleic acids into cells is an essential procedure in biological research usually performed using nonviral transfection reagents. Unfortunately, most transfection reagents have polymeric or undisclosed structures and require nonstandard synthetic procedures. Herein we report peptide dendrimers accessible as pure products from standard building blocks by solid-phase peptide synthesis and acting as nontoxic single component siRNA transfection reagents for a variety of cell lines with equal or better performance than the gold standard lipofectamine L2000.
View Article and Find Full Text PDFInhibition of postsynaptic density protein-95 (PSD-95) decouples N-methyl-d-aspartate (NMDA) receptor downstream signaling and results in neuroprotection after focal cerebral ischemia. We have previously developed UCCB01-144, a dimeric PSD-95 inhibitor, which binds PSD-95 with high affinity and is neuroprotective in experimental stroke. Here, we investigate the selectivity, efficacy and toxicity of UCCB01-144 and compare with the monomeric drug candidate Tat-NR2B9c.
View Article and Find Full Text PDFDespite the advances in gene therapy and in oligonucleotide (ON) chemistry, efficient cellular delivery remains an obstacle. Most current transfection reagents suffer from low efficacy or high cytotoxicity. In this report, we describe the synergism between lipid and dendrimer delivery vectors to enhance the transfection efficiency, while avoiding high toxicity.
View Article and Find Full Text PDFNew antibiotics are urgently needed to address multidrug-resistant (MDR) bacteria. Herein we report that second-generation (G2) peptide dendrimers bearing a fatty acid chain at the dendrimer core efficiently kill Gram-negative bacteria including Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most problematic MDR bacteria worldwide. Our most active dendrimer TNS18 is also active against Gram-positive methicillin-resistant Staphylococcus aureus.
View Article and Find Full Text PDFSharing capital ideas: The 2017 Frontiers in Medicinal Chemistry (FiMC) conference, organized jointly by the German Chemical Society, the German Pharmaceutical Society, and the Swiss Chemical Society, was held at the Department of Chemistry and Biochemistry of the University of Bern in February 2017. Herein we summarize the many conference highlights, and look forward to the next FiMC meeting, to be held in Jena (Germany) in March 2018.
View Article and Find Full Text PDFTransfection reagents are used to deliver DNA and siRNA into cells to achieve genetic manipulations, and may ultimately enable nonviral gene therapy. Progress in transfection reagents is limited by the fact that such reagents cannot be easily optimized due to their polymeric nature and/or difficult synthesis. We have developed a new class of well-defined and easily modifiable transfection reagents in the form of peptide dendrimers.
View Article and Find Full Text PDFEfficient delivery of small interfering RNA (siRNA) into cells is the basis of target-gene-specific silencing and, ultimately, gene therapy. However, current transfection reagents are relatively inefficient, and very few studies provide the sort of systematic understanding based on structure-activity relationships that would provide rationales for their improvement. This work established peptide dendrimers (administered with cationic lipids) as siRNA transfection reagents and recorded structure-activity relationships that highlighted the importance of positive charge distribution in the two outer layers and a hydrophobic core as key features for efficient performance.
View Article and Find Full Text PDF