Publications by authors named "Marc Haelterman"

We theoretically investigate the dynamics, bifurcation structure, and stability of dark localized states emerging in Kerr cavities in the presence of positive second- and fourth-order dispersion. In this previously unexplored regime, dark states form through the locking of uniform wave fronts, or domain walls, connecting two coexisting stable uniform states, and undergo a generic bifurcation structure known as collapsed homoclinic snaking. We characterize the robustness of these states by computing their stability and bifurcation structure as a function of the main control parameter of the system.

View Article and Find Full Text PDF

Reservoir computing is a brain-inspired approach for information processing, well suited to analog implementations. We report a photonic implementation of a reservoir computer that exploits frequency domain multiplexing to encode neuron states. The system processes 25 comb lines simultaneously (i.

View Article and Find Full Text PDF

We theoretically and experimentally investigate type II second harmonic generation in III-V-on-insulator wire waveguides. We show that the propagation direction plays a crucial role and that longitudinal field components can be leveraged for robust and efficient conversion. We predict that the maximum theoretical conversion is larger than that of type I second harmonic generation for similar waveguide dimensions and reach an experimental conversion efficiency of 12%/W, limited by the propagation loss.

View Article and Find Full Text PDF

Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. The performance of its analog implementation is comparable to other state-of-the-art algorithms for tasks such as speech recognition or chaotic time series prediction, but these are often constrained by the offline training methods commonly employed. Here, we investigated the online learning approach by training an optoelectronic reservoir computer using a simple gradient descent algorithm, programmed on a field-programmable gate array chip.

View Article and Find Full Text PDF

Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design.

View Article and Find Full Text PDF

Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed.

View Article and Find Full Text PDF

Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation.

View Article and Find Full Text PDF

We present an experimental observation of an oscillating Kerr cavity soliton, i.e., a time-periodic oscillating one-dimensional temporally localized structure excited in a driven nonlinear fiber cavity with a Kerr-type nonlinearity.

View Article and Find Full Text PDF

We study analytically, numerically, and experimentally the nonlinear symmetry breaking induced by broken reflection symmetry in an optical fiber system. In particular, we investigate the modulation instability regime and reveal the key role of the third-order dispersion on the asymmetry in the spectrum of the dissipative structures. Our theory explains early observations, and the predictions are in excellent agreement with our experimental findings.

View Article and Find Full Text PDF

The neck instability of bright solitons of the hyperbolic nonlinear Shrödinger equation is investigated. It is shown that this instability originates from a four-wave mixing interaction that links on-axis to off-axis radiation at opposite frequency bands. Our experiment supports this interpretation.

View Article and Find Full Text PDF

Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications.

View Article and Find Full Text PDF

Spatial optical soliton propagation in any material is limited by the losses of the optical beam, which results in beam broadening. In nematic liquid crystals it is possible to tune the magnitude of the nonlinearity by means of a bias voltage. In this work we present the idea of increasing the nonlinearity along the propagation distance by changing the bias voltage.

View Article and Find Full Text PDF

We study theoretically and experimentally the so-called self-induced modulational instability laser and show that the passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process that leads to generation of a dark-pulse train in the normal-dispersion regime.

View Article and Find Full Text PDF

We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556 nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that the signal arises from photon pairs.

View Article and Find Full Text PDF

We describe stable symmetry-breaking states in systems with two coupled nonlinear cavities, using coupled-mode theory and rigorous simulations. Above a threshold input level the symmetric state of the passive Kerr system becomes unstable, and we show how this phenomenon can be employed for switching and flip-flop purposes, using positive pulses only. A device with compact photonic crystal microcavities is proposed by which we numerically demonstrate the principle.

View Article and Find Full Text PDF

We consider a double-pass ring cavity with nonlinear incoherent optical feedback and analyze its response when it is driven by a continuous laser beam. This particular cavity is equivalent, in the temporal domain, to a simple spatial-pattern-generating system made from a Kerr slice and a feedback mirror. After formulating the evolution equations, we investigate the behavior of small-amplitude solutions and obtain an expression for the round-trip gains.

View Article and Find Full Text PDF

We report the experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media and its unique polarization evolution. This was achieved in the spatial domain in a nonbirefringent CS2 planar waveguide.

View Article and Find Full Text PDF

We show theoretically and experimentally in an optical fiber system that solitons can be spontaneously generated from incoherent light in an instantaneous response nonlinear Kerr medium. The theory reveals that the unexpected existence of these incoherent solitons relies on a phase-locking mechanism, which leads to the emergence of a mutual coherence between the incoherent waves that constitute the soliton.

View Article and Find Full Text PDF

In the generic Hamiltonian problem of parametric wave interaction, we show theoretically the existence of a sudden transition leading the wave system from completely incoherent states towards highly coherent states. This self-organization process is characterized by a reduction of the nonequilibrium entropy, in contrast with the H theorem of entropy growth inherent to the random phase approximation approach. The mechanism underlying this intriguing condensation process is in essence a reversible nonlinear damping.

View Article and Find Full Text PDF

Owing to the nonlinear effect of optical field-induced director reorientation, self-focusing of an optical beam can occur in nematic liquid crystals and an almost diffraction-compensated propagation can be observed with milliwatts of light power and propagation lengths of several millimeters. This opens the way for applications in all-optical signal handling and reconfigurable optical interconnections. Self-focusing of an optical beam in nematic liquid-crystal cells has been studied experimentally and by means of numerical simulation.

View Article and Find Full Text PDF

We consider the basic problem of the parametric generation process from an incoherent pump wave. The analysis of the degenerate configuration of the two-wave interaction reveals that the mutual convection (i.e.

View Article and Find Full Text PDF

We show theoretically that the waves generated through the generic parametric three- or four-wave-mixing processes exhibit, as a general rule, a hidden coherence characterized by skewed coherence lines along specific space-time trajectories. Our study generalizes the concept of coherence in the sense that these previously unrecognized coherent states cannot be described through the standard definitions of spatial and temporal coherence.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono8o88f29rqnl0oh75bm0i8b9f4ivb4f6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once