Purpose: More effective methods are needed for breast reconstruction after breast-conserving surgery for breast cancer. The aim of this clinical study was to assess the perioperative and long-term outcomes of adipose-derived regenerative cell (ADRC)-enriched autologous fat grafting.
Methods: Ten female patients who had undergone breast-conserving surgery and adjuvant radiotherapy for breast cancer were enrolled.
As the frequency of fat grafting to the breast has increased, some investigators have raised the possibility that this procedure may potentially increase the risks associated with breast cancer. Their concerns included not only interference with cancer detection, but also promotion of tumor formation or recurrence mediated by mechanisms such as aromatase expression, angiogenesis, and tumor stromal cells. However, published clinical studies describing outcomes of fat grafting to the breast in more than 2000 patients have not reported any increase in new or recurrent cancers.
View Article and Find Full Text PDFMethods Mol Biol
February 2011
The popularity of nonhematopoietic, adult tissue-derived stem and progenitor cells for use as a cellular research tool, and ultimately as a clinical therapeutic, has increased exponentially over the past decade. Almost all adult-derived stem/progenitor cells (autologous and allogeneic), with one exception, require at least some ex vivo expansion or further manipulation prior to use to satisfy efficacy and safety requirements for preclinical or clinical use. The principal reason is the relatively low frequency of these therapeutically valuable cells within any given adult tissue, except for adipose tissue, which has been shown to have at least two log greater concentrations of these progenitor cells.
View Article and Find Full Text PDFCurrent practice of autologous fat transfer for soft tissue augmentation is limited by poor long-term graft retention. Adipose-derived regenerative cells (ADRCs) contain several types of stem and regenerative cells, which may help improve graft retention through multiple mechanisms. Using a murine fat transplantation model, ADRCs were added to transplanted fat to test whether ADRCs could improve the long-term retention of the grafts.
View Article and Find Full Text PDFBackground: Adipose tissue consists of mature adipocytes and a mononuclear cell fraction termed adipose tissue-derived cells (ADCs). Within these heterogeneous ADCs exists a mesenchymal stem cell-like cell population, termed adipose tissue-derived stem cells. An important clinical advantage of adipose tissue-derived stem cells over other mesenchymal stem cell populations is the fact that they can be isolated in real time in sufficient quantity, such that ex vivo expansion is not necessary to obtain clinically relevant numbers for various therapeutic applications.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells derived from human liposuction aspirates, termed processed lipoaspirate cells, have been utilized as cellular delivery vehicles for the induction of bone formation in tissue engineering and gene therapy strategies. In this study, we sought to evaluate the efficacy of bone morphogenetic protein (BMP)-2-producing adipose-derived stem cells in inducing a posterolateral spine fusion in an athymic rat model.
Methods: Single-level (L4-L5) intertransverse spinal arthrodesis was attempted with use of a type-I collagen matrix in five groups of athymic rats, with eight animals in each group.
Bone marrow- and adipose tissue-derived stromal cells (BMSCs and ASCs, respectively) exhibit a similar capacity for osteogenic differentiation in vitro, but it is unclear whether they share a common differentiation process, because they originate from different tissues. The aim of this study was to explore BMSC and ASC osteogenic differentiation by focusing on the expression of extracellular matrix-related genes (ECMGs), which play a crucial role in osteogenesis and bone tissue regeneration in vivo. We characterized the gene expression profiles of BMSCs and ASCs using a custom complementary deoxyribonucleic acid microarray containing 55 ECMGs.
View Article and Find Full Text PDFPlast Reconstr Surg
September 2006
Plastic surgeons are keenly aware of the principle "replace like with like." This principle underlies much of the rationale behind the clinical use of autologous fat transplantation, despite the procedure's drawbacks. Autologous fat transplantation is frequently used for a variety of cosmetic and reconstructive indications not limited to posttraumatic defects of the face and body, involutional disorders such as hemifacial atrophy, sequelae of radiation therapy, and many aesthetic uses such as lip and facial augmentation and wrinkle therapy.
View Article and Find Full Text PDFNat Clin Pract Cardiovasc Med
March 2006
Recent preclinical and clinical studies have suggested that adult stem cells have the ability to promote the retention or restoration of cardiac function in acute and chronic ischemia. Published clinical studies have used autologous donor cells, including skeletal muscle myoblasts, cultured peripheral blood cells, or bone marrow cells. However, our research and that of others indicates that human adipose tissue is an alternative source of cells with potential for cardiac cell therapy.
View Article and Find Full Text PDFTrends Biotechnol
April 2006
Adipose tissue can be harvested in large amounts with minimal morbidity. It contains numerous cells types, including adipocytes, preadipocytes, vascular endothelial cells and vascular smooth muscle cells; it also contains cells that have the ability to differentiate into several lineages, such as fat, bone, cartilage, skeletal, smooth, and cardiac muscle, endothelium, hematopoietic cells, hepatocytes and neuronal cells. Cloning studies have shown that some adipose-derived stem cells (ADSCs) have multilineage differentiation potential.
View Article and Find Full Text PDFTissue engineering offers considerable promise in the repair or replacement of diseased and/or damaged tissues. The cellular component of this regenerative approach will play a key role in bringing these tissue engineered constructs from the laboratory bench to the clinical bedside. However, the ideal source of cells still remains unclear and may differ depending upon the application.
View Article and Find Full Text PDFBackground: Progenitor cells capable of induction into multiple mesenchymal lineages have been isolated from human liposuction aspirates. These cells, named processed lipoaspirate cells, have previously shown in vitro osteogenic capacity. The purpose of this study was to examine the in vivo bone induction capacity of bone morphogenetic protein-2 (BMP-2)-transduced processed lipoaspirate cells using adipose tissue from multiple harvest sites.
View Article and Find Full Text PDFA recent publication by Michael Longaker and colleagues represents a landmark for the use of adipose tissue as a source of cells for tissue regeneration. The authors investigated the ability of adipose tissue-derived cells (ADCs) to regenerate critical size calvarial (superior portion of the skull) defects in mice by using a novel osteoconducive apatite-coated Poly-lactic-co-glycolic acid (PLGA) scaffold for cell delivery. Direct comparison of this osteogenic ability was performed with bone marrow stromal cells and juvenile calvarial-derived osteoblasts.
View Article and Find Full Text PDFThis is a report of a 7-year-old girl suffering from widespread calvarial defects after severe head injury with multifragment calvarial fractures, decompressive craniectomy for refractory intracranial hypertension and replantation of cryopreserved skull fragments. Chronic infection resulted in an unstable skull with marked bony defects. Two years after the initial injury the calvarial defects were repaired.
View Article and Find Full Text PDFThe clinical implantation of bioengineered tissues requires an in situ nondestructive evaluation of the quality of tissue constructs developed in vitro before transplantation. Time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) is demonstrated here to noninvasively monitor the formation of osteogenic extracellular matrix (ECM) produced by putative stem cells (PLA cells) derived from human adipose tissue. We show that this optical spectroscopy technique can assess the relative expression of collagens (types I, III, IV, and V) within newly forming osteogenic ECM.
View Article and Find Full Text PDFGiant omphalocele is associated with a high degree of visceroabdominal disproportion, which prohibits safe primary closure. Conventional treatment options include (1) topical therapy with epithelialization followed by secondary ventral hernia repair and (2) staged reduction using a SILASTIC(R) (Dow Corning, Midland, MI) chimney. The authors report a case in which staged reduction of a giant omphalocele was facilitated by the use of crescent-shaped tissue expanders positioned in the potential space between the internal oblique and transversus abdominis layers of the abdominal wall.
View Article and Find Full Text PDFThe purpose of this review is to summarize current data leading to and arising from recent clinical application of cellular therapy for acute myocardial infarct (heart attack) and congestive heart failure. We specifically focus on use of adult stem cells and compare and contrast bone marrow and adipose tissue; two different sources from which stem cells can be harvested in substantial numbers with limited morbidity. Cellular therapy is the latest in a series of strategies applied in an effort to prevent or mitigate the progressive and otherwise irreversible loss of cardiac function that frequently follows a heart attack.
View Article and Find Full Text PDFPlast Reconstr Surg
February 2004
The use of stem cells for cell-based tissue-engineering strategies represents a promising alternative for the repair of cartilaginous defects. The multilineage potential of a population of putative mesodermal stem cells obtained from human lipoaspirates, termed processed lipoaspirate cells, was previously characterized. The chondrogenic potential of those cells was confirmed with a combination of histological and molecular approaches.
View Article and Find Full Text PDFThe cellular component of the tissue engineering paradigm is arguably the most important piece of the complex task of regenerating or repairing damaged or diseased tissue. Critical to the development of clinical strategies is the need for reliable sources of multipotent cells that can be obtained with limited morbidity. The adult stem cell population may be well suited for this task.
View Article and Find Full Text PDFOur laboratory has recently characterized a population of cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multi-lineage potential similar to bone-marrow-derived mesenchymal stem cells (MSCs). This study is the first comparison of PLA cells and MSCs isolated from the same patient. No significant differences were observed for yield of adherent stromal cells, growth kinetics, cell senescence, multi-lineage differentiation capacity, and gene transduction efficiency.
View Article and Find Full Text PDFPurpose: We have isolated pluripotent mesenchymal progenitor cells in large numbers from liposuction aspirates (processed lipoaspirate cells or PLAs). This study examines the osteogenic potential of PLAs and bone marrow aspirate cells (BMAs), when exposed to either recombinant human bone morphogenetic protein (BMP)-2 (rh-BMP-2) or adenovirus containing BMP-2 cDNA (Ad-BMP-2).
Methods: Liposuction aspirates underwent proteolytic digestion to obtain PLAs.
Fibroblast growth factors (FGFs) are a family of 21 cytokines with a broad spectrum of activities, including regulation of cell proliferation, differentiation, and migration. The various FGFs bind to one or more of four different tyrosine kinase receptor types. FGFs 1, 2, 5, 7, and 10 are up-regulated during adult cutaneous wound healing.
View Article and Find Full Text PDFHuman processed lipoaspirate (PLA) cells are multipotent stem cells, capable of differentiating into multiple mesenchymal lineages (bone, cartilage, fat, and muscle). To date, differentiation to nonmesodermal fates has not been reported. This study demonstrates that PLA cells can be induced to differentiate into early neural progenitors, which are of an ectodermal origin.
View Article and Find Full Text PDFWe have characterized a population of mesenchymal progenitor cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multilineage potential similar to bone marrow-derived mesenchymal stem cells and are also easily expanded in culture. The primary benefit of using adipose tissue as a source of multilineage progenitor cells is its relative abundance and ease of procurement. We examined the infection of PLA cells with adenoviral, oncoretroviral, and lentiviral vectors.
View Article and Find Full Text PDF