The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders.
View Article and Find Full Text PDFBackground: The etiology of thymic epithelial tumors is unknown. Murine polyomavirus strain PTA has been shown to induce thymomas in mice. Recently, using diverse molecular techniques, we reported the presence of human polyomavirus 7 (HPyV7) in thymic epithelial tumors.
View Article and Find Full Text PDFThe α7 acetylcholine receptor (AChR) has been linked with the onset of psychotic symptoms and we hypothesized therefore that it might also be an autoimmune target. Here, we describe a new radioimmunoassay (RIA) using iodine 125-labelled α-bungarotoxin and membrane extract from transfected HEK293 cells expressing human α7 AChR. This RIA was used to analyze sera pertaining to a cohort of 711 subjects, comprising 368 patients diagnosed with schizophrenia spectrum disorders, 140 with bipolar disorder, 58 individuals diagnosed of other mental disorders, and 118 healthy comparison subjects.
View Article and Find Full Text PDFMyasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction. Most patients have pathogenic autoantibodies against the acetylcholine receptor (AChR). In the last years a novel subpopulation of MG patients has been described that harbors antibodies against low-density lipoprotein receptor-related protein 4 (Lrp4), another postsynaptic neuromuscular antigen.
View Article and Find Full Text PDFWe report here the sequence and functional characterization of a recombinantly expressed autoantibody (mAb 131) previously isolated from a myasthenia gravis patient by immortalization of thymic B cells using Epstein-Barr virus and TLR9 activation. The antibody is characterized by a high degree of somatic mutations as well as a 6 amino acid insertion within the VHCDR2. The recombinant mAb 131 is specific for the γ-subunit of the fetal AChR to which it bound with sub-nanomolar apparent affinity, and detected the presence of fetal AChR on a number of rhabdomyosarcoma cell lines.
View Article and Find Full Text PDFAutoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target.
View Article and Find Full Text PDFAutoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown.
View Article and Find Full Text PDFMyasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies that target proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR) and the muscle-specific kinase. Because downstream of kinase 7 (Dok-7) is essential for the full activation of muscle-specific kinase and consequently for dense clustering of AChRs, we hypothesized that reduced levels of Dok-7 increase the susceptibility to passive transfer MG. To test this hypothesis, Dok-7 expression was reduced by transfecting shRNA-coding plasmids into the tibialis anterior muscle of adult rats by in vivo electroporation.
View Article and Find Full Text PDFMuscle-specific kinase (MuSK) myasthenia gravis (MG) is hallmarked by the predominant involvement of bulbar muscles and muscle atrophy. This might mimic amyotrophic lateral sclerosis (ALS) presenting with bulbar weakness. We encountered four cases of MuSK MG patients with an initial misdiagnosis of ALS.
View Article and Find Full Text PDFBackground: We have recently reported the presence of the Human polyomavirus 7 (HPyV7) in human thymic epithelial tumors as assessed by diverse molecular techniques. Here we report on the co-expression of p16, retinoblastoma protein (pRb) and phosphorylated retinoblastoma protein (phospho-Rb) in human thymic epithelial tumors in relation to HPyV7.
Methods: PRB, phospho-RB and p16 expression was assessed by immuno-histochemistry in 37 thymomas and 2 thymic carcinomas.
Introduction: Although the molecular genetics possibly underlying the pathogenesis of human thymoma have been extensively studied, its etiology remains poorly understood. Because murine polyomavirus consistently induces thymomas in mice, we assessed the presence of the novel human polyomavirus 7 (HPyV7) in human thymic epithelial tumors.
Methods: HPyV7-DNA Fluorescence in situ hybridization (FISH), DNA-polymerase chain reaction (PCR), and immunohistochemistry (IHC) were performed in 37 thymomas.
This scientific commentary refers to ‘Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes', by Carvajal-González et al. (doi:10.1093/brain/awu142).
View Article and Find Full Text PDFBortezomib is a potent inhibitor of proteasomes currently used to eliminate malignant plasma cells in multiple myeloma patients. It is also effective in depleting both alloreactive plasma cells in acute Ab-mediated transplant rejection and their autoreactive counterparts in animal models of lupus and myasthenia gravis (MG). In this study, we demonstrate that bortezomib at 10 nM or higher concentrations killed long-lived plasma cells in cultured thymus cells from nine early-onset MG patients and consistently halted their spontaneous production not only of autoantibodies against the acetylcholine receptor but also of total IgG.
View Article and Find Full Text PDFMyasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR-MG) is considered as a prototypic autoimmune disease. The thymus is important in the pathophysiology of the disease since thymus hyperplasia is a characteristic of early-onset AChR-MG and patients often improve after thymectomy. We hypothesized that thymic B cell and antibody repertoires of AChR-MG patients differ intrinsically from those of control individuals.
View Article and Find Full Text PDFC1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response.
View Article and Find Full Text PDFChanges of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the central nervous system, but in some cases this is enough to cause disease.
View Article and Find Full Text PDFMyasthenia gravis (MG) is an autoimmune disease in which autoantibodies, most commonly directed against the acetylcholine receptor (AChR), impair neuromuscular transmission and cause muscle weakness. In this study, we utilized two-dimensional difference in-gel electrophoresis (2D-DIGE) to analyze the muscle's proteomic profile at different stages of experimental autoimmune myasthenia gravis (EAMG). We identified twenty-two differentially expressed proteins, mainly related to metabolic and stress-response pathways.
View Article and Find Full Text PDFWe studied Ig heavy chain (VDJ) sequences and antigen reactivity of 412 immortalized B cell lines from the peripheral blood of 10 multiple sclerosis (MS) patients, 4 clinically isolated syndrome (CIS) patients and 6 healthy controls (HCs). 78/238 (32.8%) MS and CIS B cell lines were part of 9 clonally expanded B cell populations, of which 5 were present in multiple patients.
View Article and Find Full Text PDFFetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning.
View Article and Find Full Text PDFMyasthenia gravis is caused by antibodies to the acetylcholine receptor, muscle-specific kinase, low-density lipoprotein receptor-related protein 4, or possibly yet unidentified antibodies. The mechanisms by which these antibodies interfere with the function of postsynaptic proteins include complement activation, antigenic modulation by crosslinking of the target proteins, competition with ligand binding sites, or steric hindrance which inhibits conformational changes or binding to associated proteins. Screening for auto-antibodies to different postsynaptic targets, and also for low-affinity antibodies, is contributing to a more accurate diagnosis of MG patients.
View Article and Find Full Text PDFObjective: Myasthenia gravis (MG) is an autoimmune disease mediated mainly by anti-acetylcholine receptor (AChR) antibodies. The thymus plays a primary role in MG pathogenesis. As we recently showed an inflammatory and antiviral signature in MG thymuses, we investigated whether pathogen-sensing molecules could contribute to an anti-AChR response.
View Article and Find Full Text PDFMyasthenia gravis (MG) is treated primarily with broad-spectrum immuno-suppressants such as prednisone or azathioprine, which normally require several months to reduce autoantibody titers significantly. This delay may be caused by the resistance of the main antibody-producing cells, the plasma cells, to these drugs. In particular, long-lived plasma cells are resistant to immunosuppressive treatments and can produce (auto-) antibodies for months.
View Article and Find Full Text PDFType 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)-coating proteins may control proper lipid storage in skeletal muscle.
View Article and Find Full Text PDFSerum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP.
View Article and Find Full Text PDF