Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells.
View Article and Find Full Text PDFUnlabelled: Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow.
View Article and Find Full Text PDFfamilial platelet disorder (-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of models recapitulating the germline loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one allele with a loss-of-function mutation in the other allele ( mice), which display many hematologic characteristics found in human -FPD patients.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1 CD51 bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population throughout development.
View Article and Find Full Text PDFInnate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs.
View Article and Find Full Text PDFPediatr Blood Cancer
April 2023
We describe a patient with congenital neutropenia (CN) with a homozygous germline mutation in the colony-stimulating factor 3 receptor gene (CSF3R). The patient's bone marrow shows lagging neutrophil development with subtle left shift and unresponsiveness to CSF3 in in vitro colony assays. This patient illustrates that the di-proline hinge motif in the extracellular cytokine receptor homology domain of CSF3R is critical for adequate neutrophil production, but dispensable for in vivo terminal neutrophil maturation.
View Article and Find Full Text PDFFamilial platelet disorder with associated myeloid malignancies (RUNX1-familial platelet disorder [RUNX1-FPD]) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies Variant Curation Expert Panel guidelines.
View Article and Find Full Text PDFFor many cancers, adolescents and young adults (AYAs) have a poorer prognosis than pediatric patients. Our study evaluates survival outcomes of children (0-17 years) and AYAs (18-39 years) diagnosed with acute myeloid leukemia (AML) in the Netherlands between 1990 and 2015 (N = 2058) utilizing the population-based Netherlands Cancer Registry, which includes information on therapy and site of primary treatment. Five- and 10-year relative (disease-specific) survival were estimated for all patients, children and AYAs.
View Article and Find Full Text PDFChemotherapy-induced bone marrow (BM) injury is a significant cause of morbidity and mortality in acute myeloid leukemia (AML). Time to hematologic recovery after standard ("7 + 3") myeloablative chemotherapy can vary considerably among patients, but the factors that drive or predict BM recovery remain incompletely understood. Here, we assessed the composition of innate and adaptive immune subsets in the regenerating BM (day 17) after induction chemotherapy and related it to hematologic recovery in AML.
View Article and Find Full Text PDFBone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers.
View Article and Find Full Text PDFThe drivers of aging in the hematopoietic system remain incompletely understood. In this issue of Cell Stem Cell, Ho et al. (2019) report that functional switching of β-adrenergic nerve signaling underlies remodeling of stem cell niches, driving age-associated alterations in hematopoiesis.
View Article and Find Full Text PDFHuman bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45 stromal cells.
View Article and Find Full Text PDFMyelodysplastic syndrome (MDS) is characterized by bone marrow failure and a strong propensity for leukemic evolution. Somatic mutations are critical early drivers of the disorder, but the factors enabling the emergence, selection, and subsequent leukemic evolution of these "leukemia-poised" clones remain incompletely understood. Emerging data point at the mesenchymal niche as a critical contributor to disease initiation and evolution.
View Article and Find Full Text PDFRPS14, CSNK1A1, and miR-145 are universally co-deleted in the 5q- syndrome, but mouse models of each gene deficiency recapitulate only a subset of the composite clinical features. We analyzed the combinatorial effect of haploinsufficiency for Rps14, Csnk1a1, and miRNA-145, using mice with genetically engineered, conditional heterozygous inactivation of Rps14 and Csnk1a1 and stable knockdown of miR-145/miR-146a. Combined Rps14/Csnk1a1/miR-145/146a deficiency recapitulated the cardinal features of the 5q- syndrome, including (1) more severe anemia with faster kinetics than Rps14 haploinsufficiency alone and (2) pathognomonic megakaryocyte morphology.
View Article and Find Full Text PDFActivation of NF-κB signaling in mesenchymal cells is common in LR-MDS. Activation of NF-κB in mesenchymal cells leads to transcriptional overexpression of inflammatory factors including negative regulators of hematopoiesis. Activation of NF-κB attenuates HSPC numbers and function ex vivo.
View Article and Find Full Text PDFBone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs.
View Article and Find Full Text PDFCell Rep
January 2018
Bone marrow formation requires an orchestrated interplay between osteogenesis, angiogenesis, and hematopoiesis that is thought to be mediated by endothelial cells. The nature of the endothelial cells and the molecular mechanisms underlying these events remain unclear in humans. Here, we identify a subset of endoglin-expressing endothelial cells enriched in human bone marrow during fetal ontogeny and upon regeneration after chemotherapeutic injury.
View Article and Find Full Text PDFEndogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues.
View Article and Find Full Text PDFPeptide receptor radionuclide therapy (PRRT) may induce long-term toxicity to the bone marrow (BM). The aim of this study was to analyze persistent hematologic dysfunction (PHD) after PRRT with Lu-DOTATATE in patients with gastroenteropancreatic neuroendocrine tumors (GEP NETs). The incidence and course of PHD were analyzed in 274 GEP NET patients from a group of 367 patients with somatostatin receptor-positive tumors.
View Article and Find Full Text PDFThe bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands.
View Article and Find Full Text PDF