Publications by authors named "Marc Gesnik"

Objective: The aims of the work described here were to assess shear wave attenuation (SWA) in volunteers and patients with non-alcoholic fatty liver disease (NAFLD) and compare its diagnostic performance with that of shear wave dispersion (SWD), magnetic resonance imaging (MRI) proton density fat fraction (PDFF) and biopsy.

Methods: Forty-nine participants (13 volunteers and 36 NAFLD patients) were enrolled. Ultrasound and MRI examinations were performed in all participants.

View Article and Find Full Text PDF

Attenuation maps or measurements based on the local attenuation coefficient slope (ACS) in quantitative ultrasound (QUS) have shown potential for the diagnosis of liver steatosis. In liver cancers, tissue abnormalities and tumors detected using ACS are also of interest to provide new image contrast to clinicians. Current phantom-based approaches have the limitation of assuming a comparable speed of sound between the reference phantom and insonified tissues.

View Article and Find Full Text PDF

Objective: To develop a quantitative ultrasound (QUS)- and elastography-based model to improve classification of steatosis grade, inflammation grade, and fibrosis stage in patients with chronic liver disease in comparison with shear wave elastography alone, using histopathology as the reference standard.

Methods: This ancillary study to a prospective institutional review-board approved study included 82 patients with non-alcoholic fatty liver disease, chronic hepatitis B or C virus, or autoimmune hepatitis. Elastography measurements, homodyned K-distribution parametric maps, and total attenuation coefficient slope were recorded.

View Article and Find Full Text PDF

Background: Noninvasive vascular strain imaging under conventional line-by-line scanning has a low frame rate and lateral resolution and depends on the coordinate system. It is thus affected by high deformations due to image decorrelation between frames.

Purpose: To develop an ultrafast time-ensemble regularized tissue-Doppler optical-flow principal strain estimator for aorta deformability assessment in a long-axis view.

View Article and Find Full Text PDF

Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci.

View Article and Find Full Text PDF

Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages.

View Article and Find Full Text PDF

Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions.

View Article and Find Full Text PDF

Neuroimaging modalities such as MRI and EEG are able to record from the whole brain, but this comes at the price of either limited spatiotemporal resolution or limited sensitivity. Here, we show that functional ultrasound imaging (fUS) of the brain is able to assess local changes in cerebral blood volume during cognitive tasks, with sufficient temporal resolution to measure the directional propagation of signals. In two macaques, we observed an abrupt transient change in supplementary eye field (SEF) activity when animals were required to modify their behaviour associated with a change of saccade tasks.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated the effects of out-of-plane motions on noninvasive vascular elastography (NIVE) used to measure the strain of carotid arteries, which can help predict plaque instability.
  • A phantom model of a diseased carotid bifurcation was created to simulate various out-of-plane motions, revealing that increased motion leads to more estimation artifacts, although reliable strain estimations (high correlation coefficients) were still achievable.
  • Clinical tests confirmed that even with measurable out-of-plane motions in real patients, the Lagrangian speckle model estimator (LSME) maintained reliable results, indicating that the technique is robust for typical conditions encountered during ultrasound imaging.
View Article and Find Full Text PDF

3D functional imaging of the whole brain activity during visual task is a challenging task in rodents due to the complex tri-dimensional shape of involved brain regions and the fine spatial and temporal resolutions required to reveal the visual tract. By coupling functional ultrasound (fUS) imaging with a translational motorized stage and an episodic visual stimulation device, we managed to accurately map and to recover the activity of the visual cortices, the Superior Colliculus (SC) and the Lateral Geniculate Nuclei (LGN) in 3D. Cerebral Blood Volume (CBV) responses during visual stimuli were found to be highly correlated with the visual stimulus time profile in visual cortices (r=0.

View Article and Find Full Text PDF

Photoacoustic imaging can achieve high-resolution three-dimensional (3-D) visualization of optical absorbers at penetration depths of ∼1 cm in biological tissues by detecting optically induced high ultrasound frequencies. Tomographic acquisition with ultrasound linear arrays offers an easy implementation of single-side access, parallelized, and high-frequency detection, but usually comes with an image quality impaired by the directionality of the detectors. Indeed, a simple translation of the array perpendicular to its median imaging plane is often used, but results both in a poor resolution in the translation direction and strong limited-view artifacts.

View Article and Find Full Text PDF