Musculoskeletal models provide an approach towards simulating the ability of the human body in a variety of human-robot applications. A promising use for musculoskeletal models is to model the physical capabilities of the human body, for example, estimating the strength at the hand. Several methods of modelling and representing human strength with musculoskeletal models have been used in ergonomic analysis, human-robot interaction and robotic assistance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
In physical Human-Robot Collaboration (pHRC), having an estimate of the operator's strength capacity can help implement control strategies. Currently, the trend is to integrate devices that can measure physiological signals. This is not always a viable option, especially for highly dynamic tasks.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Musculoskeletal models are powerful analogues to simulate human motion through kinematic and dynamic analysis. When coupled with feature-rich software, musculoskeletal models form an attractive platform for the integration of machine learning for human motion analysis. Performing realistic simulations using these models provide an avenue to overcome constraints when collecting real-world data sets.
View Article and Find Full Text PDFCollaborative robots are advancing the healthcare frontier, in applications such as rehabilitation and physical therapy. Effective physical collaboration in human-robot systems require an understanding of partner intent and capability. Various modalities exist to convey such information between human agents, however, natural interactions between humans and robots are difficult to characterise and achieve.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
This work presents a multi-stage design framework for developing robotic exoskeletons suited for specific tasks, such as individualized exercises that meet the needs of patients undergoing physical therapy. The framework systematically develops the exoskeleton based on the required task space, represented by a set of limb poses which may be defined directly, or indirectly using means such as motion capture. The design process seeks to maximize the poses inside and surrounding the defined task space whilst ensuring additional criteria required to perform the task are satisfied.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2014
A model-based assistance-as-needed paradigm has been developed to govern the assistance provided by an assistive robot to its operator. This paradigm has advantages over existing methods of providing assistance-as-needed for applications such as robotic rehabilitation. However, implementation of the model-based paradigm requires a control scheme to be developed which controls the robot so as to provide the assistance calculated by the model-based paradigm to its operator.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2014
In robotic rehabilitation a promising paradigm is assistance-as-needed. This is because it promotes patient active participation which is essential for neuro-rehabilitation. A model-based assistance-as-needed paradigm has been developed which utilizes a musculoskeletal model representing the subject to calculate their assistance needs.
View Article and Find Full Text PDFTechnologies that provide physical assistance during tasks are often required to provide assistance specific to the task and person performing it. An example is robotic rehabilitation in which the assistance-as-needed (AAN) paradigm aims to provide operators with the minimum assistance required to perform the task. Current approaches use empirical performance-based methods which require repeated observation of the specific task before an estimate of the needed assistance can be determined.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
The desire to produce robots to aid in physical neurorehabilitation has led to the control paradigm Assistance-As-Needed. This paradigm aims to assist patients in performing physical rehabilitation tasks whilst providing the least amount of assistance required, maximizing the patient's effort which is essential for recovery. Ideally the provided assistance equals the gap between the capability required to perform the task and the patient's available capability.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2012
With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state.
View Article and Find Full Text PDF