Publications by authors named "Marc Fontaine"

The CNS innate immune response is a "double-edged sword" representing a fine balance between protective antipathogen responses and detrimental neurocytotoxic effects. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. In analogy to the newly described neuroimmune regulatory proteins also known as "don't eat me" signals (CD200, CD47, CD22, fractalkine, semaphorins), we herein identify the key role of complement regulator factor H (fH) in controlling neuroinflammation initiated in an acute mouse model of Ab-dependent experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Biofilms are prevalent in diseases caused by Pseudomonas aeruginosa, an opportunistic and nosocomial pathogen. By a proteomic approach, we previously identified a hypothetical protein of P. aeruginosa (coded by the gene pA3731) that was accumulated by biofilm cells.

View Article and Find Full Text PDF

There is now strong evidence for non-immune or inflammatory functions of complement, notably in the central nervous system. In particular, it has been recently reported that the anaphylatoxin receptors C3aR and C5aR are transiently expressed in the cerebellar cortex of newborn rat, suggesting that anaphylatoxins are involved in the histogenesis of the cerebellum. In the present study, we have investigated the effects of C3aR and C5aR agonists and antagonists on the development of the cerebellum of 11-12-day-old rats in vivo and in vitro.

View Article and Find Full Text PDF

Complement receptor 2 (CR2) and its physiological ligand, C3d, known for its molecular adjuvant property on the immune response, exhibit opposite effects with regard to autoimmunity. Although CR2 has been implicated in maintaining self-tolerance, recent studies reported a role for C3d signaling to CR2 in tolerance breakdown to self-antigens and the initiation of inflammatory autoimmune pathologies. In the present study, we have investigated the effect of C3d in a model of tolerogenic DNA vaccination encoding the myelin oligodendrocyte glycoprotein (MOG-DNA) which protected mice from the induction of an experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

The complement system is known to contribute to demyelination in multiple sclerosis and experimental autoimmune encephalomyelitis. However, there are few data concerning the natural adjuvant effect of C3d on the humoral response when it binds to myelin Ags. This study addresses the effect of C3d binding to the myelin oligodendrocyte glycoprotein (MOG) in the induction of experimental autoimmune encephalomyelitis in C57BL/6J mice.

View Article and Find Full Text PDF

The urotensin II (UII) gene is primarily expressed in the central nervous system, but the functions of UII in the brain remain elusive. Here, we show that cultured rat astrocytes constitutively express the UII receptor (UT). Saturation and competition experiments performed with iodinated rat UII ([(125)I]rUII) revealed the presence of high- and low-affinity binding sites on astrocytes.

View Article and Find Full Text PDF

During brain development, cells that fail to reach their final destination or to establish proper connections are eliminated. It has been shown that the proinflammatory cytokine second messenger ceramides and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) play pivotal roles in the histogenesis of the cerebellum. However, little is known regarding the effects of these two factors on cerebellar granule cell migration.

View Article and Find Full Text PDF

C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection.

View Article and Find Full Text PDF

Human mesial temporal lobe epilepsies (MTLE) are the most frequent form of partial epilepsies and display frequent pharmacoresistance. The molecular alterations underlying human MTLE remain poorly understood. A two-step transcriptional analysis consisting in cDNA microarray experiments followed by quantitative RT-PCR validations was performed.

View Article and Find Full Text PDF

During neuronal migration, cells that do not reach their normal destination or fail to establish proper connections are eliminated through an apoptotic process. Recent studies have shown that the proinflammatory cytokine tumor necrosis factor alpha (and its second messengers ceramides) and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) play a pivotal role in the histogenesis of the cerebellar cortex. However, the effects of ceramides and PACAP on migration of cerebellar granule cells have never been investigated.

View Article and Find Full Text PDF

The sphingomyelin-derived messenger ceramides provoke neuronal apoptosis through caspase-3 activation, while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuronal survival and inhibits caspase-3 activity. However, the mechanisms leading to the opposite regulation of caspase-3 by C2-ceramide and PACAP are currently unknown. Here, we show that PACAP prevents C2-ceramide-induced inhibition of mitochondrial potential and C2-ceramide-evoked cytochrome c release.

View Article and Find Full Text PDF

Activation of the complement system generates the anaphylatoxin C5a whose activities are mediated through its binding to the widely expressed C5aR. C5aR mRNA and protein expressions are known to be induced in rat hepatocytes under inflammatory conditions. However, little is known about the role of the C5a/C5aR complex in liver and its involvement during a proliferative process.

View Article and Find Full Text PDF

There is now clear evidence that the Complement anaphylatoxin C3a and C5a receptors (C3aR and C5aR) are expressed in glial cells, notably in astrocytes and microglia. In contrast, very few data are available concerning the possible expression of these receptors in neurons. Here, we show that transient expression of C3aR and C5aR occurs in cerebellar granule neurons in vivo with a maximal density in 12-day-old rat, suggesting a role of these receptors during development of the cerebellum.

View Article and Find Full Text PDF

C3a and C5a anaphylatoxins are cytokine-like polypeptides generated during complement (C) system activation and released at the inflammatory site. They exert several biological activities through binding to the G-protein-coupled receptors C3aR and C5aR, respectively. Cloning and Northern blot experiments have indicated that both receptors are expressed by myeloid as well as nonmyeloid cells (e.

View Article and Find Full Text PDF

The sphingolipid metabolites, ceramides, are critical mediators of the cellular stress response and play an important role in the control of programmed cell death. In particular, ceramides have been shown to induce apoptosis of cerebellar granule cells. We show that pituitary adenylate cyclase-activating polypeptide (PACAP) prevents C2-ceramide-induced apoptosis.

View Article and Find Full Text PDF

The complement (C) system, a major component of the innate immune system, has been described as a factor implicated in some brain disorders. C activation leads to the release of anaphylatoxins, two proinflammatory polypeptides acting through specific receptors that have been detected on brain cells. Here, we examined the effect of anaphylatoxins on chemokine expression by human astrocytes.

View Article and Find Full Text PDF

The severity of the experimental autoimmune encephalomyelitis (EAE) induced by peptide myelin oligodendrocyte glycoprotein(35-55)(pMOG(35-55)) is thought to be predominantly influenced by the major histocompatibility complex (MHC), so that C57BL6/J mice, on H2(b) strain, were only mildly sick. However, it remains unclear as to how non-MHC gene regions affect EAE. To determine whether the immunization protocol could have an influence on clinical signs, C57BL6/J mice were immunized with a multiple antigen peptide (MAP) containing eight pMOG(35-55)branches synthesized directly onto a lysine core, myelin oligodendrocyte glycoprotein (35-55)-multiple antigen peptide (MOG(35-55)-MAP), in complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors.

View Article and Find Full Text PDF