Publications by authors named "Marc E Rutter"

The X-ray structure of a putative BenF-like (gene name: PFL1329) protein from (PflBenF) has been determined at 2.6Å resolution. X-ray crystallography revealed a canonical 18-stranded β-barrel fold that forms a central pore with a diameter of ∼4.

View Article and Find Full Text PDF

PHR [PAM (protein associated with Myc)-HIW (Highwire)-RPM-1 (regulator of presynaptic morphology 1)] proteins are conserved, large multi-domain E3 ubiquitin ligases with modular architecture. PHR proteins presynaptically control synaptic growth and axon guidance and postsynaptically regulate endocytosis of glutamate receptors. Dysfunction of neuronal ubiquitin-mediated proteasomal degradation is implicated in various neurodegenerative diseases.

View Article and Find Full Text PDF

The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature's strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the alpha-proton of a carboxylate substrate that is coordinated to an essential Mg(2+). The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the beta-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily.

View Article and Find Full Text PDF

Phase II of the Protein Structure Initiative, funded by the NIH NIGMS (National Institute of General Medical Sciences), is a 5-year effort to determine thousands of protein structures. The New York SGX Research Center for Structural Genomics (NYSGXRC) is one of the four large-scale production centers tasked with determining 100-200 structures annually. Almost all protein production is carried out using the high throughput structural biology platform at SGX Pharmaceuticals (SGX), which supplies 120 or more ultrapure proteins per month for NYSGXRC crystallization and structure determination activities.

View Article and Find Full Text PDF

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation.

View Article and Find Full Text PDF

Lipid A modification with 4-amino-4-deoxy-L-arabinose confers on certain pathogenic bacteria, such as Salmonella, resistance to cationic antimicrobial peptides, including those derived from the innate immune system. ArnB catalysis of amino group transfer from glutamic acid to the 4"-position of a UDP-linked ketopyranose molecule to form UDP-4-amino-4-deoxy-L-arabinose represents a key step in the lipid A modification pathway. Structural and functional studies of the ArnB aminotransferase were undertaken by combining X-ray crystallography with biochemical analyses.

View Article and Find Full Text PDF