This is a summary report of clinical and regulatory issues discussed at the 2018 NINDS workshop, entitled "Accelerating Therapies for Antiepileptogenesis and Disease Modification." The intent of the workshop was to optimize and accelerate development of therapies for antiepileptogenesis (AEG) and disease modification in the epilepsies. The working group discussed nomenclature for antiepileptogenic therapies, subdividing them into "antiepileptogenic therapies" and "disease modifying therapies," both of which are urgently needed.
View Article and Find Full Text PDFIn this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials.
View Article and Find Full Text PDFBioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space.
View Article and Find Full Text PDFIntroduction: Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders, mutations in the gene encoding tau cause disease.
Results: We generated a mouse model, Tau4RTg2652, that expresses high levels of normal human tau in neurons resulting in the early stages of tau pathology.
Following a traumatic brain injury (TBI), the brain undergoes numerous electrophysiologic changes. The most common techniques used to evaluate these changes include electroencepalography (EEG) and evoked potentials. In animals, EEGs immediately following TBI can show either diffuse slowing or voltage attenuation, or high voltage spiking.
View Article and Find Full Text PDFCalcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, because of the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits.
View Article and Find Full Text PDFNeurotherapeutics
April 2014
Although trials with anti-seizure drugs have not shown anti-epileptogenic or disease-modifying activity in humans, new compounds are on the horizon that may require novel trial designs. We briefly discuss the unique challenges and the available options to identify innovative clinical trial designs that differentiate novel anti-epileptogenic and disease-modifying compounds, preferably early in phase II, from current anti-seizure drugs. The most important challenges of clinical testing of agents for epilepsy prevention include having sufficient preclinical evidence for a suitable agent to proceed with a human trial of an anti-epileptogenic drug, and to demonstrate the feasibility of doing such a trial.
View Article and Find Full Text PDFThis report represents a summary of the discussions led by the antiseizure treatment working group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Working Groups joint meeting in London (London Meeting). We review here what is currently known about the pharmacologic characteristics of current models of refractory seizures, both for adult and pediatric epilepsy. In addition, we address how the National Institute of Neurological Disorders and Stroke (NINDS)-funded Anticonvulsant Screening Program (ASP) is evolving to incorporate appropriate animal models in the search for molecules that might be sufficiently novel to warrant further pharmacologic development.
View Article and Find Full Text PDFRNA binding proteins (RBPs) have emerged as major causative agents of amyotrophic lateral sclerosis (ALS). To investigate the function of TAF15, an RBP recently implicated in ALS, we explored its target RNA repertoire in normal human brain and mouse neurons. Coupling high-throughput sequencing of immunoprecipitated and crosslinked RNA with RNA sequencing and TAF15 knockdowns, we identified conserved TAF15 RNA targets and assessed the impact of TAF15 on the neuronal transcriptome.
View Article and Find Full Text PDFAlthough primary neuronal cell cultures are a valuable source of in vitro insight for many neurobiologists, all current gene expression technologies for these cells have significant drawbacks. Some of these limitations of current gene expression protocols include toxicity, transient expression, a requirement for postnatal neurons, and/or low efficiency. To date, many types of experiments were not possible because of these limitations.
View Article and Find Full Text PDFDirect cellular reprogramming is a powerful new tool for regenerative medicine. In efforts to understand and treat Parkinson's Disease (PD), which is marked by the degeneration of dopaminergic neurons in the midbrain, direct reprogramming provides a valuable new source of these cells. Astrocytes, the most plentiful cells in the central nervous system, are an ideal starting population for the direct generation of dopaminergic neurons.
View Article and Find Full Text PDFBackground: The indications for deep brain stimulation (DBS) are expanding, and the feasibility and efficacy of this surgical procedure in various neurologic and neuropsychiatric disorders continue to be tested. This review attempts to provide background and rationale for applying this therapeutic option to obesity and addiction. We review neural targets currently under clinical investigation for DBS—the hypothalamus and nucleus accumbens—in conditions such as cluster headache and obsessive-compulsive disorder.
View Article and Find Full Text PDFBlocking the development of epilepsy (epileptogenesis) is a fundamental research area with the potential to provide large benefits to patients by avoiding the medical and social consequences that occur with epilepsy and lifelong therapy. Human clinical trials attempting to prevent epilepsy (antiepileptogenesis) have been few and universally unsuccessful to date. In this article, we review data about possible pathophysiological mechanisms underlying epileptogenesis, discuss potential interventions, and summarize prior antiepileptogenesis trials.
View Article and Find Full Text PDFRecent studies of the problem of ictogenesis, or the ways that seizures develop in an already hyperexcitable brain, are leading to paradigm-shifting concepts that may lead to exciting new therapies for seizures. Research on the equally important area of epileptogenesis, or the ways that a normal brain becomes epileptic, is also expanding, but comparable research into translation of laboratory findings into successful clinical interventions for those at high risk needs to be developed.
View Article and Find Full Text PDFTranslating laboratory discoveries into successful therapies for preventing epilepsy is a difficult task, but preventing epilepsy in those who are known to be at high risk needs to be one of our highest priorities. At present, we need to approach this task as a parallel set of research endeavors-one concentrating on laboratory experiments designed to learn how to prevent epilepsy after brain trauma and the other focusing on how to perform the appropriate clinical research in humans to demonstrate that whatever is discovered in the laboratory can be appropriately tested. It is too important to let the second process await conclusion of the first.
View Article and Find Full Text PDFMost current methods of gene delivery for primary cultured hippocampal neurons are limited by toxicity, transient expression, the use of immature neurons and/or low efficiency. We performed a direct comparison of seven serotypes of adeno-associated virus (AAV) vectors for genetic manipulation of primary cultured neurons in vitro. Serotypes 1, 2, 7, 8 and 9 mediated highly efficient, nontoxic, stable long-term gene expression in cultured cortical and hippocampal neurons aged 0-4 weeks in vitro; serotypes 5 and 6 were associated with toxicity at high doses.
View Article and Find Full Text PDFPurpose: We assayed the effects of rapamycin, an immunomodulatory agent known to inhibit the activity of the mammalian target of rapamycin (mTOR) cascade, on candidate gene expression and single unit firing properties in cultured rat hippocampal neurons as a strategy to define the effects of rapamycin on neuronal gene transcription and excitability.
Methods: Rapamycin was added (100nM) to cultured hippocampal neurons on days 3 and 14. Neuronal somatic size and dendritic length were assayed by immunohistochemistry and digital imaging.
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25.
View Article and Find Full Text PDFSeveral G protein-coupled receptors (GPCRs) mediate neuronal cell migration and survival upon activation by their native peptide ligands but activate death-signaling pathways when activated by certain non-native ligands. In cultured neurons, we recently described expression of the unique seven-transmembrane (7TM) -G protein-coupled receptor, APJ, which is also strongly expressed in neurons in the brain and various cell types in other tissues. We now demonstrate that the endogenous APJ peptide ligand apelin activates signaling pathways in rat hippocampal neurons and modulates neuronal survival.
View Article and Find Full Text PDFPurpose: To evaluate the therapeutic efficacy of two antiepileptic compounds, RWJ-333369 and RWJ-333369-A in a well-established experimental model of lateral fluid percussion (FP) traumatic brain injury (TBI) in the rat.
Methods: Anethestized Male Sprague-Dawley rats (n=227) were subjected to lateral FP brain injury or sham-injury. Animals were randomized to receive treatment with RWJ-333369 (60 mg/kg, p.
Pharmacoresistance continues to be a challenging problem for a substantial number of epileptic patients and their attending physicians. In the past 10 years, we have made little progress in reducing the incidence of refractory epilepsy and have no innovative plans in place with the potential to do so. In this article, I propose two radical solutions to our present dilemma.
View Article and Find Full Text PDFAlthough neural stem and progenitor cells have been shown to differentiate into neurons, few studies have examined the physiological properties of the differentiated neurons derived from stem cells. Here we show that mouse brain progenitor cells (mBPCs) differentiated in culture by removal of mitogenic factors or addition of BDNF or GDNF express neuronal-specific proteins including MAP-2 and synaptobrevin II. However, these cells demonstrate small voltage-gated Na+ currents and are not able to generate action potentials.
View Article and Find Full Text PDFObjective: To report the autoantigens of a new category of treatment-responsive paraneoplastic encephalitis.
Methods: Analysis of clinical features, neuropathological findings, tumors, and serum/cerebrospinal fluid antibodies using rat tissue, neuronal cultures, and HEK293 cells expressing subunits of the N-methyl-D-aspartate receptor (NMDAR).
Results: Twelve women (14-44 years) developed prominent psychiatric symptoms, amnesia, seizures, frequent dyskinesias, autonomic dysfunction, and decreased level of consciousness often requiring ventilatory support.