Publications by authors named "Marc Debliquy"

La-decorated BiOCO (BCO-La) microspheres are synthesized using a facile wet chemical strategy for sensing low-concentration nonanal (CHO) at room temperature. These BCO-La gas sensors are applied to evaluate agricultural product quality, specifically for cooked rice. The sensitivity of the BCO-6La sensor significantly surpassed that of the pure BCO sensor, achieving a response value of 174.

View Article and Find Full Text PDF

Creating high-performance gas sensors for heptanal detection at room temperature demands the development of sensing materials that incorporate distinct spatial configurations, functional components, and active surfaces. In this study, we employed a straightforward method combining hydrothermal strategy with ultrasonic processing to produce mesoporous graphene quantum dots/bismuth antimonate (GQDs/BiSbO) with nanorod cluster forms. The BiSbO was incorporated with appropriate contents of GQDs resulting in significantly improved attributes such as heightened sensitivity (59.

View Article and Find Full Text PDF

In this paper, we presented a novel, compact, conceptually simple, and fully functional low-cost prototype of a pH sensor with a PANI thin film as a sensing layer. The PANI deposition process is truly low-cost; it performs from the liquid phase, does not required any specialized equipment, and comprises few processing steps. The resulting PANI layer has excellent stability, resistance to solvents, and bio- and chemical compatibility.

View Article and Find Full Text PDF

Pure zinc oxide nanoparticles, as well as those doped with 3% calcium, aluminum, and gallium, were synthesized using a sol-gel method and then deposited onto an alumina substrate for sensing tests. The resulting nanoparticles were characterized using a variety of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), UV-VIS-NIR absorption spectroscopy, and photoluminescence (PL) measurements, to examine their structural, morphological, and optical properties. The prepared nanoparticles were found to have the hexagonal wurtzite structure of ZnO with a 63 space group.

View Article and Find Full Text PDF

The palatability of cooked rice is susceptible to the flavor and effective detection of volatile organic compounds (VOCs) can avoid deterioration and improve the taste quality. Herein, hierarchical antimony tungstate (SbWO) microspheres are synthesized through a solvothermal process and the effect of solvothermal temperature on the room temperature gas-sensing properties of gas sensors is investigated. Outstanding sensitivity towards VOC biomarkers (nonanal, 1-octanol, geranyl acetone and 2-pentylfuran) in cooked rice is achieved and the sensors exhibit remarkable stability and reproducibility, which are contributed to the formation of the hierarchical microsphere structure, larger specific surface area, narrower band gap and increased oxygen vacancy content.

View Article and Find Full Text PDF

Fish are prone to spoilage and deterioration during processing, storage, or transportation. Therefore, there is a need for rapid and efficient techniques to detect and evaluate fish freshness during different periods or conditions. Gas sensors are increasingly important in the qualitative and quantitative evaluation of high-protein foods, including fish.

View Article and Find Full Text PDF

An electro-plasmonic biosensor is used to attract proteins and cells on the surface of a fiber optic probe by controlled biomolecular migration. Concentrating targets on a high performance plasmon-assisted fiber grating sensor leads to a drastic enhancement of the limit of detection. This architecture relies on a biofunctionalized gold coated tilted fiber Bragg grating (TFBG) that operates as a working electrode to enable electrophoresis in the probed medium.

View Article and Find Full Text PDF

Nitric oxide (NO) selective sensors capable of sensing in a hot-gas environment are increasingly required for monitoring combustion and processes yielding high temperature gas containing NO. This work reports the fabrication of sensors by a facile deposition of water-based ink blended commercial WO powders spray coating on sensor platforms fitted with Au-interdigitated electrodes (IDEs) and the characterization of their sensing performances under hot NO-containing air at temperatures exceeding 500 °C. After deposition and heat treatment of the sensing material on the substrate fitted with Au-IDE at 700 °C, the composition and morphology of the active material were analyzed and the presence of a single phase, fine particulates of WO, has been confirmed by XRD and SEM, respectively.

View Article and Find Full Text PDF

Boar taint detection is a major concern for the pork industry. Currently, this taint is mainly detected through a sensory evaluation. However, little is known about the entire volatile organic compounds (VOCs) profile perceived by the assessor.

View Article and Find Full Text PDF

Since the first graphene gas sensor has been reported, functionalized graphene gas sensors have already attracted a lot of research interest due to their potential for high sensitivity, great selectivity, and fast detection of various gases. In this paper, we summarize the recent development and progression of functionalized graphene sensors for ammonia (NH) detection at room temperature. We review graphene gas sensors functionalized by different materials, including metallic nanoparticles, metal oxides, organic molecules, and conducting polymers.

View Article and Find Full Text PDF

Saccharide sensors represent a broad research area in the scope of sensing devices and their involvement in the medical diagnosis field is particularly relevant for cancer detection at early stage. In that context, we present a non-enzymatic optical fiber-based sensor that makes use of plasmon-assisted tilted fiber Bragg gratings (TFBGs) functionalized for D-glucose biosensing through polydopamine (PDA)-immobilized concanavalin A (Con A). Our probe allows a live and accurate monitoring of the PDA layer deposition leading improved surface biochemistry.

View Article and Find Full Text PDF

Graphene decorated by palladium (Pd) nanoparticles has been investigated for hydrogen sensor applications. The density of Pd nanoparticles is critical for the sensor performance. We develop a new chemical method to deposit high-density, small-size and uniformly-distributed Pd nanoparticles on graphene.

View Article and Find Full Text PDF

Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption.

View Article and Find Full Text PDF

Surface plasmon resonance excitation with optical fiber gratings has been typically studied in aqueous solutions. This work describes the procedure to excite a plasmon wave in gaseous media and perform refractive index measurements in these environments. Grating photo-inscription with 193 nm excimer laser radiation allows us to obtain slightly tilted fiber Bragg gratings exhibiting a cladding mode resonance comb along several hundreds of nanometers.

View Article and Find Full Text PDF

In this article, we describe a NO₂ sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc₂) in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO₂. NO₂ is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre.

View Article and Find Full Text PDF

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions.

View Article and Find Full Text PDF

Today, significant attention has been brought to the development of sensitive, specific, cheap, and reliable sensors for real-time monitoring. Molecular imprinting technology is a versatile and promising technology for practical applications in many areas, particularly chemical sensors. Here, we present a chemical sensor for detecting formaldehyde, a toxic common indoor pollutant gas.

View Article and Find Full Text PDF

In this paper, an NO2 optical fiber sensor is presented for pollution monitoring in road traffic applications. This sensor exploits the simultaneous transmission of visible light, as a measurement signal, and UV light, for the recovery of the NO2 sensitive materials. The sensor is based on a multimode fiber tip coated with a thin film of lutetium bisphthalocyanine (LuPc2).

View Article and Find Full Text PDF

We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated.

View Article and Find Full Text PDF

The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes.

View Article and Find Full Text PDF

We report on the synthesis of a novel perylene monoimide derivative that shows high response and selectivity for zinc ion detection. The complexation of Zn(2+) by the dye is followed by FD-MS, (1)H NMR, UV-vis spectroscopy, and isothermal titration calorimetry. Quantum chemical calculations are performed to gain further insight into the electronic processes responsible for the spectroscopic changes observed upon complexation.

View Article and Find Full Text PDF

Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction.

View Article and Find Full Text PDF