Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner.
View Article and Find Full Text PDFAlthough microtubule inhibitors (MTI) remain a therapeutically valuable payload option for antibody-drug conjugates (ADC), some cancers do not respond to MTI-based ADCs. Efforts to fill this therapeutic gap have led to a recent expansion of the ADC payload "toolbox" to include payloads with novel mechanisms of action such as topoisomerase inhibition and DNA cross-linking. We present here the development of a novel DNA mono-alkylator ADC platform that exhibits sustained tumor growth suppression at single doses in MTI-resistant tumors and is well tolerated in the rat upon repeat dosing.
View Article and Find Full Text PDFKey defining attributes of an antibody-drug conjugate (ADC) include the choice of the targeting antibody, linker, payload, and the drug-to-antibody ratio (DAR). Historically, most ADC platforms have used the same DAR for all targets, regardless of target characteristics. However, recent studies and modeling suggest that the optimal DAR can depend on target expression level and intratumoral heterogeneity, target internalization and trafficking, and characteristics of the linker and payload.
View Article and Find Full Text PDFWhile STING agonists have proven to be effective preclinically as anti-tumor agents, these promising results have yet to be translated in the clinic. A STING agonist antibody-drug conjugate (ADC) could overcome current limitations by improving tumor accessibility, allowing for systemic administration as well as tumor-localized activation of STING for greater anti-tumor activity and better tolerability. In line with this effort, a STING agonist ADC platform was identified through systematic optimization of the payload, linker, and scaffold based on multiple factors including potency and specificity in both in vitro and in vivo evaluations.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) achieve targeted drug delivery to a tumor and have demonstrated clinical success in many tumor types. The activity and safety profile of an ADC depends on its construction: antibody, payload, linker, and conjugation method, as well as the number of payload drugs per antibody [drug-to-antibody ratio (DAR)]. To allow for ADC optimization for a given target antigen, we developed Dolasynthen (DS), a novel ADC platform based on the payload auristatin hydroxypropylamide, that enables precise DAR-ranging and site-specific conjugation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Tumorigenesis depends on intricate interactions between genetically altered tumor cells and their surrounding microenvironment. While oncogenic drivers in lung squamous carcinoma (LUSC) have been described, the role of stroma in modulating tissue architecture, particularly cell polarity, remains unclear. Here, we report the establishment of a 3D coculture system of LUSC epithelial cells with cancer-associated fibroblasts (CAFs) and extracellular matrix that together capture key components of the tumor microenvironment (TME).
View Article and Find Full Text PDFDisease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs).
View Article and Find Full Text PDFIntratumoral heterogeneity in non-small cell lung cancer (NSCLC) has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI) and serum.
View Article and Find Full Text PDFIntratumoral heterogeneity helps drive the selection for diverse therapy-resistant cell populations. In this study, we demonstrate the coexistence of two therapy-resistant populations with distinct properties that are reproducibly enriched under conditions that characterize tumor pathophysiology. Breast cancer cells that survived chemotherapy or hypoxia were enriched for cells expressing the major hyaluronic acid receptor CD44.
View Article and Find Full Text PDFPurpose: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival.
Experimental Design: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined.
Antibody-drug conjugates (ADCs) represent a promising modality for the treatment of cancer. The therapeutic strategy is to deliver a potent drug preferentially to the tumor and not normal tissues by attaching the drug to an antibody that recognizes a tumor antigen. The selection of antigen targets is critical to enabling a therapeutic window for the ADC and has proven to be surprisingly complex.
View Article and Find Full Text PDFThe use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence.
View Article and Find Full Text PDFWe have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) represent a promising therapeutic modality for the clinical management of cancer. We sought to develop a novel ADC that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells (TIC), which comprise the most aggressive cell population in the tumor. We optimized an anti-5T4 ADC (A1mcMMAF) by sulfydryl-based conjugation of the humanized A1 antibody to the tubulin inhibitor monomethylauristatin F (MMAF) via a maleimidocaproyl linker.
View Article and Find Full Text PDFPoorly differentiated tumors in non-small cell lung cancer (NSCLC) have been associated with shorter patient survival and shorter time to recurrence following treatment. Here, we integrate multiple experimental models with clinicopathologic analysis of patient tumors to delineate a cellular hierarchy in NSCLC. We show that the oncofetal protein 5T4 is expressed on tumor-initiating cells and associated with worse clinical outcome in NSCLC.
View Article and Find Full Text PDFThe hypothesis that cancer is driven by tumour-initiating cells (popularly known as cancer stem cells) has recently attracted a great deal of attention, owing to the promise of a novel cellular target for the treatment of haematopoietic and solid malignancies. Furthermore, it seems that tumour-initiating cells might be resistant to many conventional cancer therapies, which might explain the limitations of these agents in curing human malignancies. Although much work is still needed to identify and characterize tumour-initiating cells, efforts are now being directed towards identifying therapeutic strategies that could target these cells.
View Article and Find Full Text PDFComparative genomics of CpG dinucleotides, which are targets of DNA methyltransferases in vertebrate genomes, has been constrained by their evolutionary instability and by the effect of methylation on their mutation rates. We compared the human and chimpanzee genomes to identify DNA sequence signatures correlated with rates of mutation at CpG dinucleotides. The new signatures were used to develop robust comparative genomics of CpG dinucleotides in heterogeneous regions and to identify genomic domains that have anomalous CpG divergence rates.
View Article and Find Full Text PDFDNA methyltransferase 1 (DNMT1) has been reported to interact with a wide variety of factors and to contain intrinsic transcriptional repressor activity. When a conservative point mutation was introduced at the key catalytic residue, mutant DNMT1 failed to rescue any of the phenotypes of Dnmt1-null embryonic stem (ES) cells, which indicated that the biological functions of DNMT1 are exerted through the methylation of DNA. ES cells that expressed the mutant protein did not survive differentiation.
View Article and Find Full Text PDFINTRODUCTIONThe protocol presented here focuses on a standard microscope-based fluorescence resonance energy transfer (FRET) assay for budding yeast, but many aspects are applicable to other systems and assays. It provides information on experimental design and data analysis procedures that can be extended to FRET experiments in any system, including mammalian cell lines and other model organisms. The steps describing strain construction can be applied to studies in yeast using fluorimetry instead of microscopy.
View Article and Find Full Text PDFThe decatenation checkpoint normally delays entry into mitosis until chromosomes have been disentangled through the action of topoisomerase II. We have found that the decatenation checkpoint is highly inefficient in mouse embryonic stem cells, mouse neural progenitor cells, and human CD34+ hematopoietic progenitor cells. Checkpoint efficiency increased when embryonic stem cells were induced to differentiate, which suggests that the deficiency is a feature of the undifferentiated state.
View Article and Find Full Text PDF