Philos Trans A Math Phys Eng Sci
November 2022
Numerous applied models used in the study of optimal control problems, inverse problems, shape optimization, machine learning, fractional programming, neural networks, image registration and so on lead to stochastic optimization problems in Hilbert spaces. Under a suitable convexity assumption on the objective function, a necessary and sufficient optimality condition for stochastic optimization problems is a stochastic variational inequality. This article presents a new stochastic regularized second-order iterative scheme for solving a variational inequality in a stochastic environment where the primary operator is accessed by employing sampling techniques.
View Article and Find Full Text PDF