Publications by authors named "Marc D Roy"

Several chemicals and pharmaceuticals increase the incidence of hemangiosarcomas (HSAs) in mice, but the relevance to humans is uncertain. Recently, canine HSAs were identified as a powerful tool for investigating the pathogenesis of human HSAs. To characterize the cellular phenotype of canine HSAs, we evaluated immunoreactivity and/or messenger RNA (mRNA) expression of markers for hematopoietic stem cells (HSCs), endothelial cells (ECs), a tumor suppressor protein, and a myeloid marker in canine HSAs.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICI) targeting PD1, PDL1, or CTLA4 are associated with immune-related adverse events (irAE) in multiple organ systems including myocarditis. The pathogenesis and early diagnostic markers for ICI-induced myocarditis are poorly understood, and there is currently a lack of laboratory animal model to enhance our understanding. We aimed to develop such a model using cynomolgus monkeys.

View Article and Find Full Text PDF
Article Synopsis
  • - CRISPR-Cas RNA-guided endonucleases can potentially fix or disrupt specific DNA sequences, but challenges in delivering these enzymes to targeted cells limit their use.
  • - Researchers designed Cas9 proteins with receptors that target specific cells, showing improved internalization in liver cells (HEPG2) compared to control cells (SKHEP).
  • - The study demonstrated effective and specific gene editing in liver cells using these engineered proteins, providing a promising pathway for targeted gene therapies in the future.
View Article and Find Full Text PDF

A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR.

View Article and Find Full Text PDF

The genesis of bone and teeth involves highly coordinated processes, which involve multiple cell types and proteins that direct the nucleation and crystallization of inorganic hydroxyapatite (HA). Recent studies have shown that peptides mediate the nucleation process, control HA microstructure or even inhibit HA mineralization. Using phage display technology, a short peptide was identified that binds to crystalline HA and to HA-containing domains of human teeth with chemical and morphological specificity.

View Article and Find Full Text PDF

Water soluble CdSe/ZnS nanoparticles with emission maxima from 511 nm to 596 nm and quantum efficiencies ranging from 11% to 28% are synthesized in a facile two-step method in ambient atmospheric conditions using a commercially available microwave reactor.

View Article and Find Full Text PDF

Oxidative stress is a deleterious force that must be combated relentlessly by aerobic organisms and is known to underlie many human diseases including atherosclerosis, Parkinson's disease, and Alzheimer's disease. Information available about the oxidative stress response has come primarily from studies using reactive oxygen species (ROS) with ill-defined locations within the cell. Thus, existing models do not account for possible differences between stress originating within particular regions of the cell.

View Article and Find Full Text PDF

The capability to relate phenotypic effects to damage associated with either the mitochondrial or nuclear genome is especially useful under a number of circumstances. Potential hazardous exposures can be evaluated for genotoxicity and related to diseases, particularly cancer. The correlation of DNA damage with adverse health effects is also important in evaluating the safety of various chemical agents and prospective therapeutics.

View Article and Find Full Text PDF

The properties of a novel family of peptide-based DNA-cleavage agents are described. Examination of the DNA-cleavage activities of a systematic series of peptide-intercalator conjugates revealed trends that show a strong dependence on peptide sequence. Conjugates differing by a single residue displayed reactivities that varied over a wide range.

View Article and Find Full Text PDF

We engineer colloidal quantum dot nanocrystals through the choice of biomolecular ligands responsible for nanoparticle nucleation, growth, stabilization, and passivation. We systematically vary the presence of, and thereby elucidate the role of, phosphate groups and a multiplicity of functionalities on the mononucleotides used as ligands. The results provide the basis for synthesis of nanoparticles using precisely controlled synthetic oligonucleotide sequences.

View Article and Find Full Text PDF

Cellular oxidative stress promotes chemical reactions causing damage to DNA, proteins, and membranes. Here, we describe experiments indicating that reactive oxygen species, in addition to degrading polypeptides and polynucleotides through direct reactions, can also promote damaging biomolecular cross reactivity by converting protein residues into peroxides that cleave the DNA backbone. The studies reported show that a variety of residues induce strand scission upon oxidation, and hydrogen abstraction occurring at the DNA backbone is responsible for the damage.

View Article and Find Full Text PDF

The A3243G mutation within the human mitochondrial (hs mt) tRNALeuUUR gene is associated with maternally inherited deafness and diabetes (MIDD) and other mitochondrial encephalopathies. One of the most pronounced structural effects of this mutation is the disruption of the native structure through stabilization of a high-affinity dimeric complex. We conducted a series of studies that address the structural properties of this tRNA dimer, and we assessed its formation under physiological conditions.

View Article and Find Full Text PDF

The structure of the human mitochondrial (hs mt) tRNALeu(UUR) features several domains that are predicted to exhibit limited thermodynamic stability. An elevated frequency of disease-related mutations within these domains suggests a link between structural instability and the functional effects of pathogenic mutations. A series of tRNAs featuring mutations within the D and anticodon stems were prepared and investigated using nuclease probing.

View Article and Find Full Text PDF

The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: