Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task.
View Article and Find Full Text PDFLegged robots have the potential to cover terrain not accessible to wheel-based robots and vehicles. This makes them better suited to perform tasks such as search and rescue in real-world unstructured environments. In addition, pneumatically-actuated, compliant robots may be more suited than their rigid counterparts to real-world unstructured environments with humans where unintentional contact or impact may occur.
View Article and Find Full Text PDFThe field of soft robotics is continuing to grow as more researchers see the potential for robots that can safely interact in unmodeled, unstructured, and uncertain environments. However, in order for the design, integration, and control of soft robotic actuators to develop into a full engineering methodology, a set of metrics and standards need to be established. This paper attempts to lay the groundwork for that process by proposing six soft robot actuator metrics that can be used to evaluate and compare characteristics and performance of soft robot actuators.
View Article and Find Full Text PDFModel-based optimal control of soft robots may enable compliant, underdamped platforms to operate in a repeatable fashion and effectively accomplish tasks that are otherwise impossible for soft robots. Unfortunately, developing accurate analytical dynamic models for soft robots is time-consuming, difficult, and error-prone. Deep learning presents an alternative modeling approach that only requires a time history of system inputs and system states, which can be easily measured or estimated.
View Article and Find Full Text PDFThis paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint.
View Article and Find Full Text PDFIn this paper, we analyze and report on observable trends in human-human dyads performing collaborative manipulation (co-manipulation) tasks with an extended object (object with significant length). We present a detailed analysis relating trends in interaction forces and torques with other metrics and propose that these trends could provide a way of improving communication and efficiency for human-robot dyads. We find that the motion of the co-manipulated object has a measurable oscillatory component.
View Article and Find Full Text PDFFront Robot AI
October 2020
Past work has shown model predictive control (MPC) to be an effective strategy for controlling continuum joint soft robots using basic lumped-parameter models. However, the inaccuracies of these models often mean that an integral control scheme must be combined with MPC. In this paper we present a novel dynamic model formulation for continuum joint soft robots that is more accurate than previous models yet remains tractable for fast MPC.
View Article and Find Full Text PDFSoft robots have the potential to significantly change the way that robots interact with the environment and with humans. However, accurately modeling soft robot and soft actuator dynamics in order to perform model-based control can be extremely difficult. Deep neural networks are a powerful tool for modeling systems with complex dynamics such as the pneumatic, continuum joint, six degree-of-freedom robot shown in this paper.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
June 2013
Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.
View Article and Find Full Text PDF