Publications by authors named "Marc Crockatt"

A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran).

View Article and Find Full Text PDF

Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established.

View Article and Find Full Text PDF

The furan Diels-Alder (DA) cycloaddition reaction has become an important tool in green chemistry, being central to the sustainable synthesis of many chemical building blocks. The restriction to electron-rich furans is a significant limitation of the scope of suitable dienes, in particular hampering the use of the furans most readily obtained from biomass, furfurals and their oxidized variants, furoic acids. Herein, it is shown that despite their electron-withdrawing substituents, 2-furoic acids and derivatives (esters, amides) are in fact reactive dienes in Diels-Alder couplings with maleimide dienophiles.

View Article and Find Full Text PDF

A novel route for the production of the versatile chemical building block phthalide from biorenewable furfuryl alcohol and acrylate esters is presented. Two challenges that limit sustainable aromatics production via Diels-Alder (DA) aromatisation-an unfavourable equilibrium position and undesired regioselectivity when using asymmetric addends-were addressed using a dynamic kinetic trapping strategy. Activated acrylates were used to speed up the forward and reverse DA reactions, allowing for one of the four DA adducts to undergo a selective intramolecular lactonisation reaction in the presence of a weak base.

View Article and Find Full Text PDF

A series of 3-phenoxypropyl piperidine analogues have been discovered as novel ORL1 receptor agonists. Structure-activity relationships have been explored around the 3-phenoxypropyl region with several potent and selective analogues identified.

View Article and Find Full Text PDF