Background: Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system.
View Article and Find Full Text PDFThe mosquito Anopheles gambiae s.s. is a primary malaria vector throughout sub-Saharan Africa including the islands of the Comoros archipelago (Anjouan, Grande Comore, Mayotte and Mohéli).
View Article and Find Full Text PDFBackground: Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored.
Results: Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations.
is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, has been found infected with , suggesting that it may be epidemiologically important.
View Article and Find Full Text PDFUsing high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates.
View Article and Find Full Text PDFNovel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, , coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one.
View Article and Find Full Text PDFUnderstanding the genomic and environmental basis of cold adaptation is key to understand how plants survive and adapt to different environmental conditions across their natural range. Univariate and multivariate genome-wide association (GWAS) and genotype-environment association (GEA) analyses were used to test associations among genome-wide SNPs obtained from whole-genome resequencing, measures of growth, phenology, emergence, cold hardiness, and range-wide environmental variation in coastal Douglas-fir (). Results suggest a complex genomic architecture of cold adaptation, in which traits are either highly polygenic or controlled by both large and small effect genes.
View Article and Find Full Text PDFWe report the first complete mitogenome (Mt) sequence of an understudied malaria vector in Africa. The sequence was extracted from one individual mosquito from São Tomé island. The length of the Mt genome was 15,408 bp with 79.
View Article and Find Full Text PDFThe genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs.
View Article and Find Full Text PDFThe majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males.
View Article and Find Full Text PDFBackground: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development.
View Article and Find Full Text PDFOver the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome-wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools.
View Article and Find Full Text PDFDissecting the genetic and genomic architecture of complex traits is essential to understand the forces maintaining the variation in phenotypic traits of ecological and economical importance. Whole-genome resequencing data were used to generate high-resolution polymorphic single nucleotide polymorphism (SNP) markers and genotype individuals from common gardens across the loblolly pine (Pinus taeda) natural range. Genome-wide associations were tested with a large phenotypic dataset comprising 409 variables including morphological traits (height, diameter, carbon isotope discrimination, pitch canker resistance), and molecular traits such as metabolites and expression of xylem development genes.
View Article and Find Full Text PDFThe 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp.
View Article and Find Full Text PDFThe 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp.
View Article and Find Full Text PDFWe investigate the utility and scalability of new read cloud technologies to improve the draft genome assemblies of the colossal, and largely repetitive, genomes of conifers. Synthetic long read technologies have existed in various forms as a means of reducing complexity and resolving repeats since the outset of genome assembly. Recently, technologies that combine subhaploid pools of high molecular weight DNA with barcoding on a massive scale have brought new efficiencies to sample preparation and data generation.
View Article and Find Full Text PDFUntil very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome.
View Article and Find Full Text PDFOak represents a valuable natural resource across Northern Hemisphere ecosystems, attracting a large research community studying its genetics, ecology, conservation, and management. Here we introduce a draft genome assembly of valley oak () using Illumina sequencing of adult leaf tissue of a tree found in an accessible, well-studied, natural southern California population. Our assembly includes a nuclear genome and a complete chloroplast genome, along with annotation of encoded genes.
View Article and Find Full Text PDFHundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection.
View Article and Find Full Text PDFThe largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20-40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.
View Article and Find Full Text PDFConifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date.
View Article and Find Full Text PDFBackground: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.
View Article and Find Full Text PDF