Publications by authors named "Marc Clastre"

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway.

View Article and Find Full Text PDF
Article Synopsis
  • The pharmaceutical industry is experiencing increased demand for anticancer plant drugs, facing shortages in supply due to their use in chemotherapy.
  • Researchers have developed an efficient method using yeast cell factories to convert tabersonine into vindoline, a key precursor for anticancer drugs like vinblastine and vincristine.
  • The process involved optimizing yeast gene copies and culture conditions, achieving a high yield of 266 mg/l of vindoline in a bioreactor, highlighting a potential for large-scale production from readily available tabersonine.
View Article and Find Full Text PDF

Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory.

View Article and Find Full Text PDF

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins.

View Article and Find Full Text PDF

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine -hydroxycinnamoyltransferases (SHT).

View Article and Find Full Text PDF

Over the last few decades, methods relating to plant tissue culture have become prevalent within the cosmetic industry. Forecasts predict the cosmetic industry to grow to an annual turnover of around a few hundred billion US dollars. Here we focused on L.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are specialized metabolites synthesized in many plants of the Apocynaceae family including Catharanthus roseus and Rauvolfia sp. MIAs are part of the chemical arsenal that plants evolved to face pet and herbivore attacks, and their high biological activities also confer pharmaceutical properties exploited in human pharmacopeia. Developing robust and straightforward tools to elucidate each step of MIA biosynthetic pathways thus constitutes a prerequisite to the understanding of Apocynaceae defense mechanisms and to the exploitation of MIA cytotoxicity through their production by metabolic engineering.

View Article and Find Full Text PDF

Elucidating plant-specialized biosynthetic pathways has always constituted a laborious task, notably for natural products with high pharmaceutical values. Here, we discuss emerging omics-based strategies that facilitate the identification of genes from these complex metabolic pathways, paving the way to engineered supplies of these compounds through synthetic biology approaches.

View Article and Find Full Text PDF

Large-scale gene co-expression networks are an effective methodology to analyze sets of co-expressed genes and discover new gene functions or associations. Distances between genes are estimated according to their expression profiles and are visualized in networks that may be further partitioned to reveal communities of co-expressed genes. Creating expression profiles is now eased by the large amounts of publicly available expression data (microarrays and RNA-seq).

View Article and Find Full Text PDF

Cytokinins (CK) have been extensively studied for their roles in plant development. Recently, they also appeared to ensure crucial functions in the pathogenicity of some bacterial and fungal plant pathogens. Thus, identifying cytokinin-producing pathogens is a prerequisite to gain a better understanding of their role in pathogenicity.

View Article and Find Full Text PDF

The UDP-glycosyltransferase UGT88F subfamily has been described first in Malus x domestica with the characterization of UGT88F1. Up to now UGT88F1 was one of the most active UGT glycosylating dihydrochalcones in vitro. The involvement of UGT88F1 in phloridzin (phloretin 2'-O-glucoside) synthesis, the main apple tree dihydrochalcone, was further confirmed in planta.

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzed the genomes of 67 eukaryotic species, identifying 748 predicted HK proteins and categorizing them into known groups, providing new insights into their structure and diversity.
  • * The research uncovered new eukaryotic HK groups, found previously exclusive HK groups in additional supergroups, and indicated evolutionary trends like gene appearance and loss, offering an initial overview of HK evolution in eukaryotes.
View Article and Find Full Text PDF

Co-expression networks are essential tools to infer biological associations between gene products and predict gene annotation. Global networks can be analyzed at the transcriptome-wide scale or after querying them with a set of guide genes to capture the transcriptional landscape of a given pathway in a process named Pathway Level Coexpression (PLC). A critical step in network construction remains the definition of gene co-expression.

View Article and Find Full Text PDF

Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization) of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented.

View Article and Find Full Text PDF

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown.

View Article and Find Full Text PDF

Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.

View Article and Find Full Text PDF
Article Synopsis
  • * MAT was found to be ineffective in yeast and plants, prompting researchers to identify other potential acetyltransferase candidates that correlate with T19H expression, ultimately discovering TAT, which acetylates root-specific MIAs more efficiently than MAT.
  • * TAT’s role in the biosynthetic pathway and its successful heterologous expression in plants allows for more efficient metabolic engineering of MIAs, enabling the creation of customized MIAs that combine
View Article and Find Full Text PDF

Candida auris has recently emerged as a global cause of severe hospital-acquired fungal infections. To enable functional genomic approaches for this prominent pathogen, we designed a synthetic construct that can be used to genetically transform the genome-sequenced strain VPCI 479/P/13 of C. auris following an efficient electroporation procedure.

View Article and Find Full Text PDF

We have developed a series of synthetic constructs suitable to genetically manipulate a broad range of yeast species belonging to the fungal CTG clade. This molecular toolbox notably allows heterologous gene expression, single or dual fluorescence labeling and construction of luciferase-expressing strains for bioluminescence imaging.

View Article and Find Full Text PDF

Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with AHK clearly displayed three distinct profiles.

View Article and Find Full Text PDF

Grape canes represent a promising source of bioactive phytochemicals. However the stabilization of the raw material after pruning remains challenging. We recently reported the induction of stilbenoid metabolism after winter pruning including a strong accumulation of E-resveratrol and E-piceatannol during the first six weeks of storage.

View Article and Find Full Text PDF

Monoterpene indole alkaloids comprise a diverse family of over 2000 plant-produced natural products. This pathway provides an outstanding example of how nature creates chemical diversity from a single precursor, in this case from the intermediate strictosidine. The enzymes that elicit these seemingly disparate products from strictosidine have hitherto been elusive.

View Article and Find Full Text PDF

Hybrid histidine kinases (HHKs) progressively emerge as prominent sensing proteins in the fungal kingdom and as ideal targets for future therapeutics. The group X HHK is of major interest, since it was demonstrated to play an important role in stress adaptation, host-pathogen interactions and virulence in some yeast and mold models, and particularly Chk1, that corresponds to the sole group X HHK in Candida albicans. In the present work, we investigated the role of Chk1 in the low-virulence species Candida guilliermondii, in order to gain insight into putative conservation of the role of group X HHK in opportunistic yeasts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: