The central command for breathing arises mainly from two interconnected rhythmogenic hindbrain networks, the parafacial respiratory group (pFRG or epF at embryonic stages) and the preBötzinger complex (preBötC), which are comprised of a limited number of neurons located in confined regions of the ventral medulla. In rodents, both networks become active toward the end of gestation but little is known about the signaling pathways involved in their anatomical and functional establishment during embryogenesis. During embryonic development, epF and preBötC neurons migrate from their territories of origin to their final positions in ventral brainstem areas.
View Article and Find Full Text PDFBreathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances.
View Article and Find Full Text PDFBreathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem.
View Article and Find Full Text PDFNeural networks control complex motor outputs by generating several rhythmic neuronal activities, often with different time scales. One example of such a network is the pre-Bötzinger complex respiratory network (preBötC) that can simultaneously generate fast, small-amplitude, monophasic eupneic breaths together with slow, high-amplitude, biphasic augmented breaths (sighs). However, the underlying rhythmogenic mechanisms for this bimodal discharge pattern remain unclear, leaving two possible explanations: the existence of either reconfiguring processes within the same network or two distinct subnetworks.
View Article and Find Full Text PDFAims: Pulmonary hypertension (PH) is the main disease of pulmonary circulation. Alteration in calcium homeostasis in pulmonary artery smooth muscle cells (PASMCs) is recognized as a key feature in PH. The present study was undertaken to investigate the involvement of T-type voltage-gated calcium channels (T-VGCCs) in the control of the pulmonary vascular tone and thereby in the development of PH.
View Article and Find Full Text PDFTo test the hypothesis that focal and parafocal neocortical tissue from pediatric patients with intractable epilepsy exhibits cellular and synaptic differences, the authors characterized the propensity of these neurons to generate (a) voltage-dependent bursting and (b) synaptically driven paroxysmal depolarization shifts. Neocortical slices were prepared from tissue resected from patients with intractable epilepsy. Multiunit network activity and simultaneous whole-cell patch recordings were made from neurons from three patient groups: (1) those with normal histology; (2) those with mild and severe cortical dysplasia; and (3) those with abnormal pathology but without cortical dysplasia.
View Article and Find Full Text PDFRhythm-generating neural circuits underlying diverse behaviors such as locomotion, sleep states, digestion and respiration play critical roles in our lives. Irregularities in these rhythmic behaviors characterize disease states--thus, it is essential that we identify the ionic and/or cellular mechanisms that are necessary for triggering these rhythmic behaviors on a regular basis. Here, we examine which ionic conductances underlie regular or 'stable' respiratory activities, which are proposed to underlie eupnea, or normal quiet breathing.
View Article and Find Full Text PDFZinc (Zn2+) functions as a signalling molecule in the nervous system and modulates many ionic channels. In this study, we have explored the effects of Zn2+ on recombinant T-type calcium channels (CaV3.1, CaV3.
View Article and Find Full Text PDFThe precise contribution of T-type Ca2+ channels in generating action potentials (APs), burst firing and intracellular Ca2+ signals needs further elucidation. Here, we show that CaV3.3 channels can trigger repetitive APs, generating spontaneous membrane potential oscillations (MPOs), and a concomitant increase in the intracellular Ca2+ concentration ([Ca2+]i) when overexpressed in NG108-15 cells.
View Article and Find Full Text PDF