Publications by authors named "Marc Casati"

The heptapeptide angiotensin-(1-7) (Ang-(1-7)) is protective in the cardiovascular system through its induction of vasodilator production and angiogenesis. Despite acting antagonistically to the effects of elevated, pathophysiological levels of angiotensin II (AngII), recent evidence has identified convergent and beneficial effects of low levels of both Ang-(1-7) and AngII. Previous work identified the AngII receptor type I (AT1R) as a component of the protein complex formed when Ang-(1-7) binds its receptor, Mas1.

View Article and Find Full Text PDF

We investigated the role of microRNAs (miRNA) in endothelial dysfunction in the setting of cardiometabolic disorders represented by type 2 diabetes mellitus (T2DM). miR-29 was dysregulated in resistance arterioles obtained by biopsy in T2DM patients. Intraluminal delivery of miR-29a-3p or miR-29b-3p mimics restored normal endothelium-dependent vasodilation (EDVD) in T2DM arterioles that otherwise exhibited impaired EDVD Intraluminal delivery of anti-miR-29b-3p in arterioles from non-DM human subjects or rats or targeted mutation of gene in rats led to impaired EDVD and exacerbation of hypertension in the rats.

View Article and Find Full Text PDF

Cardiovascular events are the leading cause of death in patients with chronic kidney disease (CKD), although the pathological mechanisms are poorly understood. Here we longitudinally characterized left ventricle pathology in a 5/6 nephrectomy rat model of CKD and identify novel molecular mediators. Next-generation sequencing of left ventricle mRNA and microRNA (miRNA) was performed at physiologically distinct points in disease progression, identifying alterations in genes in numerous immune, lipid metabolism, and inflammatory pathways, as well as several miRNAs.

View Article and Find Full Text PDF

Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein.

View Article and Find Full Text PDF