A chemoinformatic method was developed to extract nonflat scaffolds embedded in natural products within the Dictionary of Natural Products (DNP). The cedrane scaffold was then chosen as an example of a nonflat scaffold that directs substituents in three-dimensional (3D) space. A cedrane scaffold that has three orthogonal handles to allow generation of 1D, 2D, and 3D libraries was synthesized on a large scale.
View Article and Find Full Text PDFThe impact of time, therapy area, and route of administration on 13 physicochemical properties calculated for 664 drugs developed from a natural prototype was investigated. The mean values for the majority of properties sampled over five periods from pre-1900 to 2013 were found to change in a statistically significant manner. In contrast, lipophilicity and aromatic ring count remained relatively constant, suggesting that these parameters are the most important for successful prosecution of a natural product drug discovery program if the route of administration is not focused exclusively on oral availability.
View Article and Find Full Text PDFNatural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products).
View Article and Find Full Text PDFMass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis.
View Article and Find Full Text PDFMarine trypanocidal natural products are, most often, reported with trypanocidal activity and selectivity against human cell lines. The triaging of hits requires a consideration of chemical tractability for drug development. We utilized a combined Lipinski's rule-of-five, chemical clustering and ChemGPS-NP principle analysis to analyze a set of 40 antitrypanosomal natural products for their drug like properties and chemical space.
View Article and Find Full Text PDFA small-molecule natural product, euodenine A (1), was identified as an agonist of the human TLR4 receptor. Euodenine A was isolated from the leaves of Euodia asteridula (Rutaceae) found in Papua New Guinea and has an unusual U-shaped structure. It was synthesized along with a series of analogues that exhibit potent and selective agonism of the TLR4 receptor.
View Article and Find Full Text PDFChemical investigations of two specimens of Trikentrion flabelliforme collected from Australian waters have resulted in the identification of four new indole alkaloids, trikentramides A-D (9-12). The planar chemical structures for 9-12 were established following analysis of 1D/2D NMR and MS data. The relative configurations for 9-12 were determined following the comparison of (1)H NMR data with data previously reported for related natural products.
View Article and Find Full Text PDFFragment-based screening is commonly used to identify compounds with relatively weak but efficient localized binding to protein surfaces. We used mass spectrometry to study fragment-sized three-dimensional natural products. We identified seven securinine-related compounds binding to Plasmodium falciparum 2'-deoxyuridine 5'-triphosphate nucleotidohydrolase (PfdUTPase).
View Article and Find Full Text PDFIn the period from January 1981 to December 2010, 1068 small-molecule new chemical entities (NCEs) were introduced, of which ca. 34% are either a natural product or a close analogue. While this metric reflects the impact natural products have played in delivering new chemical starting points (leads) for the pharmaceutical industry, it does not capture the decline this approach has suffered over the last 20 years as the high-throughput screening (HTS) of pure compound libraries has become more popular.
View Article and Find Full Text PDFTreatment of triphenylphosphine (Ph(3)P) with an excess of diisopropyl azodicarboxylate at 0-25 °C resulted in the formation of a symmetrical tetraalkyl tetrazetidinetetracarboxylate radical cation, containing the elusive cyclic N(4) ring system. Electron paramagnetic resonance (EPR) spectroscopy revealed a 9-line spectrum, with hyperfine coupling constants indicative of four almost magnetically equivalent nitrogen atoms. The radical species was surprisingly long-lived, and could still be observed several hours after generation and standing at 25 °C.
View Article and Find Full Text PDFWhile natural products or their derivatives and mimics have contributed around 50% of current drugs, there has been no approach allowing front-loading of chemical space compliant with lead- and drug-like properties. The importance of physicochemical properties of molecules in the development of orally bioavailable drugs has been recognized. Classical natural product drug discovery has only been able to undertake this analysis retrospectively after compounds are isolated and structures elucidated.
View Article and Find Full Text PDFA novel harringtonolide-inspired scaffold containing a cycloheptatriene ring and two fused cyclopentane rings has been synthesised from simple starting materials. The scaffold, containing a similar substitution pattern and relative stereochemistry to the complex diterpenoid, has been enumerated into a small library of derivatives. One of these library members has been converted into a sub-library of substituted triazoles using copper-catalysed azide-alkyne cycloaddition (click) chemistry.
View Article and Find Full Text PDFSchiff bases bearing phenyl and pyridyl groups were synthesized by condensation of appropriate amines with 2-hydroxynaphthaldehyde. These Schiff bases were obtained as colored crystalline solids. The proton NMR spectra of these compounds showed a doublet for the NH protons indicating a keto tautomer for these Schiff bases.
View Article and Find Full Text PDFA quantitative structure-property relationships (QSPR) study was carried out for 17 steroidal compounds using calculated molecular descriptors and measured properties. The utility of calculated molecular descriptors and properties was evaluated and improved in some instances by subgroup classification of these 17 compounds into estrogens and androgens. The calculated values for the octanol-water partition coefficient (logK(ow)) were found to be in good agreement with the measured values for all 17 compounds, whilst good agreement between the calculated and measured values for aqueous solubility (logS) was found only for the subgroup of androgens.
View Article and Find Full Text PDFAn efficient formal synthesis of (+/-)-hyphodermins A and D, metabolites of Hyphoderma radula, has been completed in 12 and 11 steps, respectively. The tricyclic carbon skeleton of enone 6 was rapidly assembled from diester 11 via an alpha brominationn-elimination sequence followed by anhydride formation. Regioselective reduction of the lactone group of enone 6 with LiAlH(t-BuO) 3 gave lactol 15.
View Article and Find Full Text PDFAn efficient formal synthesis of hyphodermin B 1, a metabolite of Hyphoderma radula, has been completed in 15% overall yield. The tricyclic carbon skeleton 3 was rapidly assembled from a novel vinyl enone via a Diels-Alder reaction, followed by dehydrogenation and anhydride formation. Selective reduction of anhydride 3 with LiAlH(t-BuO)3 gave hyphodermin B 1 in 99% yield.
View Article and Find Full Text PDFThe relationship between a natural product's biosynthetic enzyme and its therapeutic target is unknown. The concept of protein fold topologies, as a determining factor in recognition, has been developed through molecular modeling techniques. We have shown that biosynthetic enzymes and the therapeutic targets of three classes of natural products that inhibit protein kinases share a common protein fold topology (PFT) and cavity recognition points despite having different fold type classifications.
View Article and Find Full Text PDFCyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. Owing to the robustness of amide bond chemistry, the ability to explore extensive chemical diversity by incorporation of unnatural and natural amino acids, and the ability to explore conformational diversity, through the incorporation of various constraints, arrays of cyclic peptides can be tailored to broadly sample chemical diversity. We describe the combination of a safety catch linker with a directed-sorted procedure for the synthesis of large arrays of diverse cyclic peptides for high-throughput screening.
View Article and Find Full Text PDF[reaction: see text] Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the "middle" of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction.
View Article and Find Full Text PDF