Publications by authors named "Marc Cadotte"

Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.

View Article and Find Full Text PDF

Unlabelled: Benefits provided by urban trees are increasingly threatened by non-native pests and pathogens. Monitoring of these invasions is critical for the effective management and conservation of urban tree populations. However, a shortage of professionally collected species occurrence data is a major impediment to assessments of biological invasions in urban areas.

View Article and Find Full Text PDF
Article Synopsis
  • * Sites with warmer, wetter conditions and more species generally saw increased biomass, while arid, species-poor areas experienced declines, alongside notable changes in seasonal plant growth patterns.
  • * Factors like grazing and nutrient input didn't consistently predict biomass changes, indicating that grasslands are undergoing substantial transformations that could affect food security, biodiversity, and carbon storage, particularly in dry regions.
View Article and Find Full Text PDF
Article Synopsis
  • * The study found that higher dominance of EcM associations correlates with increased ecosystem multifunctionality, but the effects vary by forest biome and elevation.
  • * The researchers caution that while EcM dominance can enhance multiple ecosystem functions, the impact of mycorrhizal composition on ecosystem health isn't universally applicable and changes across different contexts.
View Article and Find Full Text PDF

Understanding how different mechanisms act and interact in shaping communities and ecosystems is essential to better predict their future with global change. Disturbance legacy, abiotic conditions, and biotic interactions can simultaneously influence tree growth, but it remains unclear what are their relative contributions and whether they have additive or interactive effects. We examined the separate and joint effects of disturbance intensity, soil conditions, and neighborhood crowding on tree growth in 10 temperate forests in northeast China.

View Article and Find Full Text PDF

Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.

View Article and Find Full Text PDF
Article Synopsis
  • Feralization, an evolutionary process, is explored through the study of the ancient fiber crop ramie, focusing on genomic changes linked to its domestication and feralization.
  • Researchers produced a detailed genome assembly of feral ramie and found significant structural variations from domesticated varieties, using a global collection of 915 ramie accessions.
  • Results revealed that feral ramie shows higher genetic diversity and different natural selection patterns compared to domesticated ramie, indicating that it has adapted to its environment while sharing ecological niches with domesticated forms, offering insights into crop evolution and potential germplasm resources.
View Article and Find Full Text PDF
Article Synopsis
  • The genus Vincetoxicum comprises invasive vines in North America that disrupt ecosystems and complicate land management efforts, primarily due to their production of harmful alkaloids.
  • Research using advanced metabolomics techniques identified 25 different alkaloids in Vincetoxicum species, helping to establish a biosynthetic pathway that explains their diversity and potential invasiveness.
  • Phytotoxic effects of these alkaloids on other plant seedlings were noted, alongside their accumulation in both soil and on damaged leaves, suggesting these compounds play a significant role in ecological interactions and could inform management strategies for controlling these invasive plants.
View Article and Find Full Text PDF

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Darwin's naturalization conundrum involves two conflicting ideas about whether alien species related to native species are more likely to thrive in new areas.
  • A study of over 219,000 native and 9,500 naturalized plant species revealed that at higher latitudes, naturalized aliens are more closely related to native species, suggesting they adapt better to harsher climates.
  • Human activity has worsened this trend by favoring alien species that are less related to natives in warmer, drier regions, highlighting the importance of considering both climate and human impact when studying this topic.
View Article and Find Full Text PDF

Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields.

View Article and Find Full Text PDF

Biodiversity drives ecosystem processes, but its influence on deadwood decomposition is poorly understood. To test the effects of insect diversity on wood decomposition, we conducted a mesocosm experiment manipulating the species richness and functional diversity of beetles. We applied a novel approach using computed tomography scanning to quantify decomposition by insects and recorded fungal and bacterial communities.

View Article and Find Full Text PDF

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community.

View Article and Find Full Text PDF

Biodiversity changes, such as decline in species richness and biotic homogenization, can have grave consequences for ecosystem functionality. Careful investigation of biodiversity-ecosystem multifunctionality linkages with due consideration of conceptual and technical challenges is required to make the knowledge practically useful in managing social-ecological systems. In this paper, we introduced different methods to assess perspectives regarding the issue of diversity-multifunctionality, including a possible multifunctional redundancy/uniqueness, and the influences of the number and identity of functions on multifunctionality.

View Article and Find Full Text PDF

Research has demonstrated that intraspecific functional trait variation underpins plant responses to environmental variability. However, few studies have evaluated how trait variation shifts in response to plant pathogens, even though pathogens are a major driver of plant demography and diversity, and despite evidence of plants expressing distinct strategies in response to pathogen pressures. Understanding trait-pathogen relationships can provide a more realistic understanding of global patterns of functional trait variation.

View Article and Find Full Text PDF

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale.

View Article and Find Full Text PDF

Plant species invasion represents one of the major drivers of biodiversity change globally, yet there is confusion about the nature of nonindigenous species (NIS) impact. This confusion stems from differing notions of what constitutes invasive species impact and the scales at which it should be assessed. At local scales, the mechanisms of the impact on local competitors can be classified into four scenarios: (1) minimal impact from NIS inhabiting unique niches; (2) neutral impact spread across the community and proportional to NIS abundance; (3) targeted impact on a small number of competitors with overlapping niches; and (4) pervasive impact that is disproportionate to NIS abundance and caused by modifications that filter out other species.

View Article and Find Full Text PDF

The patterns of successional change of decomposer communities is unique in that resource availability predictably decreases as decomposition proceeds. Saproxylic (i.e.

View Article and Find Full Text PDF

Positive interactions have been hypothesised to influence plant community dynamics and species invasions. However, their prevalence and importance relative to negative interactions remain unclear to understand community change and invasibility. We examined pairwise biotic interactions using over 50 years of successional data to assess the prevalence of positive interactions and their effects on each focal species (either native or exotic).

View Article and Find Full Text PDF

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance.

View Article and Find Full Text PDF

Ecologists usually find that plant demography (e.g. survival and growth) changes along with plant size and environmental gradients, which suggests the effects of ontogeny-related processes and abiotic filtering.

View Article and Find Full Text PDF

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation.

View Article and Find Full Text PDF

Climate change and geological events have long been known to shape biodiversity, implying that these can likewise be viewed from a biological perspective. To study whether plants can shed light on this, and how they responded to climate change there, we examined Oreocnide, a genus widely distributed in SE Asia. Based on broad geographic sampling with genomic data, we employed an integrative approach of phylogenomics, molecular dating, historical biogeography, and ecological analyses.

View Article and Find Full Text PDF

Beta(β)-diversity, or site-to-site variation in species composition, generally decreases with increasing latitude, and the underlying processes driving this pattern have been challenging to elucidate because the signals of community assembly processes are scale-dependent. In this meta-analysis, by synthesising the results of 103 studies that were distributed globally and conducted at various spatial scales, we revealed a latitudinal gradient in the detectable assembly processes of vascular plant communities. Variations in plant community composition at low and high latitudes were mainly explained by geographic variables, suggesting that distance decay and dispersal limitations causing spatial aggregation are influential in these regions.

View Article and Find Full Text PDF