We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H -ATPase Pma1 (which drives nutrient and K uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector.
View Article and Find Full Text PDFThe Arabidopsis (Arabidopsis thaliana L.) genome encodes for four distinct classes of homeodomain leucine-zipper (HD-ZIP) transcription factors (HD-ZIPI to HD-ZIPIV), which are all organized in multi-gene families. HD-ZIP transcription factors act as sequence-specific DNA-binding proteins that are able to control the expression level of target genes.
View Article and Find Full Text PDFWe have identified QDR2 in a screening for genes able to confer tolerance to sodium and/or lithium stress upon overexpression. Qdr2 is a multidrug transporter of the major facilitator superfamily, originally described for its ability to transport the antimalarial drug quinidine and the herbicide barban. To identify its physiological substrate, we have screened for phenotypes dependent on QDR2 and found that Qdr2 is able to transport monovalent and divalent cations with poor selectivity, as shown by growth tests and the determination of internal cation content.
View Article and Find Full Text PDF