Publications by authors named "Marc C Heuermann"

Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes.

View Article and Find Full Text PDF

In plant science, the suboptimal match of growing conditions hampers the transfer of knowledge from controlled environments in glasshouses or climate chambers to field environments. Here we present the PhenoSphere, a plant cultivation infrastructure designed to simulate field-like environments in a reproducible manner. To benchmark the PhenoSphere, the effects on plant growth of weather conditions of a single maize growing season and of an averaged season over three years are compared to those of a standard glasshouse and of four years of field trials.

View Article and Find Full Text PDF

Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution.

View Article and Find Full Text PDF

Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions.

View Article and Find Full Text PDF

Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M ) family derived from a heterozygous (M ) parent were identified using whole-genome shotgun (WGS) sequencing of a small number of (M ) individuals with mutant and wild-type phenotypes.

View Article and Find Full Text PDF

Fumarate and malate are known intermediates of the TCA cycle, a mitochondrial metabolic pathway generating NADH for respiration. Arabidopsis thaliana and other Brassicaceae contain an additional cytosolic fumarase (FUM2) that functions in carbon assimilation and nitrogen use. Here, we report the identification of a hitherto unknown FUM2 promoter insertion/deletion (InDel) polymorphism found between the Col-0 and C24 accessions, which also divides a large number of Arabidopsis accessions carrying either the Col-0 or the C24 allele.

View Article and Find Full Text PDF