Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge.
View Article and Find Full Text PDFSoil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils.
View Article and Find Full Text PDFBackground: Major advances over the past decade in molecular ecology are providing access to soil fungal diversity in forest ecosystems worldwide, but the diverse functions and metabolic capabilities of this microbial community remain largely elusive. We conducted a field survey in montane old-growth broadleaved and conifer forests, to investigate the relationship between soil fungal diversity and functional genetic traits. To assess the extent to which variation in community composition was associated with dominant tree species (oak, spruce, and fir) and environmental variations in the old-growth forests in the Jade Dragon Snow Mountain in Yunnan Province, we applied rDNA metabarcoding.
View Article and Find Full Text PDFEctomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire N from N-chitin.
View Article and Find Full Text PDFGlobal warming is pushing populations outside their range of physiological tolerance. According to the environmental envelope framework, the most vulnerable populations occur near the climatic edge of their species' distributions. In contrast, populations from the climatic center of the species range should be relatively buffered against climate warming.
View Article and Find Full Text PDFIn forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e.
View Article and Find Full Text PDFRecent studies have highlighted that dead fungal mycelium represents an important fraction of soil carbon (C) and nitrogen (N) inputs and stocks. Consequently, identifying the microbial communities and the ecological factors that govern the decomposition of fungal necromass will provide critical insight into how fungal organic matter (OM) affects forest soil C and nutrient cycles. Here, we examined the microbial communities colonising fungal necromass during a multiyear decomposition experiment in a boreal forest, which included incubation bags with different mesh sizes to manipulate both plant root and microbial decomposer group access.
View Article and Find Full Text PDFEnvironmental DNA contains information on the species interaction networks that support ecosystem functions and services. Next-generation biomonitoring proposes the use of this data to reconstruct ecological networks in real time and then compute network-level properties to assess ecosystem change. We investigated the relevance of this proposal by assessing: (i) the replicability of DNA-based networks in the absence of ecosystem change, and (ii) the benefits and shortcomings of community- and network-level properties for monitoring change.
View Article and Find Full Text PDFMycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter.
View Article and Find Full Text PDFFire is a major disturbance linked to the evolutionary history and climate of Mediterranean ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines).
View Article and Find Full Text PDFThe genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence.
View Article and Find Full Text PDFMicrob Ecol
August 2019
Harvest residue management is a key issue for the sustainability of Eucalyptus plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in Eucalyptus plantations. We studied the effects of harvest residue management (branches, leaves, bark) of Eucalyptus grandis trees on soil enzymatic activities and community-level physiological profiles in a Brazilian plantation.
View Article and Find Full Text PDFFungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
Sequencing of a high number of fungal genomes has become possible due to the development of next generation sequencing techniques (NGS). The most recent developments aim to sequence single-molecule long-reads in order to improve genome assemblies, but consequently needs higher quality (minimum >20 kbp) DNA as starting material. However, environmental-derived samples from soil, wood, or litter often contain phenolic compounds, pigments, and other molecules that can be inhibitors for reactions during sequencing library construction.
View Article and Find Full Text PDFChitin is one of the most abundant nitrogen-containing polymers in forest soil. Ability of ectomycorrhizal (EM) fungi to utilize chitin may play a key role in the EM symbiosis nutrition and soil carbon cycle. In forest, EM fungi exhibit high diversity, which could be based on function partitioning and trait complementarity.
View Article and Find Full Text PDFFungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations.
View Article and Find Full Text PDFSoil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake.
View Article and Find Full Text PDFThe patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis.
View Article and Find Full Text PDFFungi are principal actors of forest soils implied in many ecosystem services and the mediation of tree's responses. Forecasting fungal responses to environmental changes is necessary for maintaining forest productivity, although our partial understanding of how abiotic and biotic factors affect fungal communities is restricting the predictions. We examined fungal communities of Pinus sylvestris along elevation gradients to check potential responses to climate change-associated factors.
View Article and Find Full Text PDFThe diversity of fungi along environmental gradients has been little explored in contrast to plants and animals. Consequently, environmental factors influencing the composition of fungal assemblages are poorly understood. The aim of this study was to determine whether the diversity and composition of leaf and root-associated fungal assemblages vary with elevation and to investigate potential explanatory variables.
View Article and Find Full Text PDFIn temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France).
View Article and Find Full Text PDFThe dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated.
View Article and Find Full Text PDFGlutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties.
View Article and Find Full Text PDFFungi are important actors in ecological processes and trophic webs in mangroves. Although saprophytic fungi occurring in the intertidal part of mangrove have been well studied, little is known about the diversity and structure of the fungal communities in this ecosystem or about the importance of functional groups like pathogens and mutualists. Using tag-encoded 454 pyrosequencing of the ITS1, ITS2, nu-ssu-V5 and nu-ssu-V7 regions, we studied and compared the fungal communities found on the marine and aerial parts of Avicennia marina and Rhizophora stylosa trees in a mangrove in New Caledonia.
View Article and Find Full Text PDF