Publications by authors named "Marc Bruning"

Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed.

View Article and Find Full Text PDF

Motivation: The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins.

View Article and Find Full Text PDF

Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states.

View Article and Find Full Text PDF

Nature presents various protein fibers that bridge the nanometer to micrometer regimes. These structures provide inspiration for the de novo design of biomimetic assemblies, both to address difficulties in studying and understanding natural systems, and to provide routes to new biomaterials with potential applications in nanotechnology and medicine. We have designed a self-assembling fiber system, the SAFs, in which two small α-helical peptides are programmed to form a dimeric coiled coil and assemble in a controlled manner.

View Article and Find Full Text PDF

α-Helical coiled coils are ubiquitous protein-protein-interaction domains. They share a relatively straightforward sequence repeat, which directs the folding and assembly of amphipathic α-helices. The helices can combine in a number of oligomerisation states and topologies to direct a wide variety of protein assemblies.

View Article and Find Full Text PDF

Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament.

View Article and Find Full Text PDF
Article Synopsis
  • Designing new proteins that mimic or expand on natural structures is a tough challenge but could enhance our understanding of protein functions and lead to innovations in biotechnology.
  • Researchers created a new coiled-coil protein, which features a six-helix bundle with a channel that allows water to pass through, despite being lined mostly with hydrophobic amino acids.
  • Mutations in the channel can incorporate other polar amino acids, enabling the formation of a unique protein structure that opens up possibilities for creating novel proteins with specialized functions.
View Article and Find Full Text PDF

The development of biomatrices for technological and biomedical applications employs self-assembled scaffolds built from short peptidic motifs. However, biopolymers composed of protein domains would offer more varied molecular frames to introduce finer and more complex functionalities in bioreactive scaffolds using bottom-up approaches. Yet, the rules governing the three-dimensional organization of protein architectures in nature are complex and poorly understood.

View Article and Find Full Text PDF

Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.

View Article and Find Full Text PDF

The thiamin diphosphate- (ThDP-) dependent enzyme benzoylformate decarboxylase (BFDC) catalyzes the nonoxidative decarboxylation of benzoylformic acid to benzaldehyde and carbon dioxide. To date, no structural information for a cofactor-bound reaction intermediate in BFDC is available. For kinetic analysis, a chromophoric substrate analogue was employed that produces various absorbing intermediates during turnover but is a poor substrate with a 10(4)-fold compromised kcat.

View Article and Find Full Text PDF