We investigate the ability to discover data assimilation (DA) schemes meant for chaotic dynamics with deep learning. The focus is on learning the analysis step of sequential DA, from state trajectories and their observations, using a simple residual convolutional neural network, while assuming the dynamics to be known. Experiments are performed with the Lorenz 96 dynamics, which display spatiotemporal chaos and for which solid benchmarks for DA performance exist.
View Article and Find Full Text PDFMemristor-based neural networks provide an exceptional energy-efficient platform for artificial intelligence (AI), presenting the possibility of self-powered operation when paired with energy harvesters. However, most memristor-based networks rely on analog in-memory computing, necessitating a stable and precise power supply, which is incompatible with the inherently unstable and unreliable energy harvesters. In this work, we fabricated a robust binarized neural network comprising 32,768 memristors, powered by a miniature wide-bandgap solar cell optimized for edge applications.
View Article and Find Full Text PDFThis study proposes voltage-dependent-synaptic plasticity (VDSP), a novel brain-inspired unsupervised local learning rule for the online implementation of Hebb's plasticity mechanism on neuromorphic hardware. The proposed VDSP learning rule updates the synaptic conductance on the spike of the postsynaptic neuron only, which reduces by a factor of two the number of updates with respect to standard spike timing dependent plasticity (STDP). This update is dependent on the membrane potential of the presynaptic neuron, which is readily available as part of neuron implementation and hence does not require additional memory for storage.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2021
In recent years, machine learning (ML) has been proposed to devise data-driven parametrizations of unresolved processes in dynamical numerical models. In most cases, the ML training leverages high-resolution simulations to provide a dense, noiseless target state. Our goal is to go beyond the use of high-resolution simulations and train ML-based parametrization using direct data, in the realistic scenario of noisy and sparse observations.
View Article and Find Full Text PDFThe brain performs intelligent tasks with extremely low energy consumption. This work takes its inspiration from two strategies used by the brain to achieve this energy efficiency: the absence of separation between computing and memory functions and reliance on low-precision computation. The emergence of resistive memory technologies indeed provides an opportunity to tightly co-integrate logic and memory in hardware.
View Article and Find Full Text PDFWe report on the fabrication of memory devices based on a nanoporous GeSbTe layer electrodeposited inbetween TiN and Ag electrodes. It is shown that devices can operate along two distinct electrical modes consisting of a volatile or a non-volatile resistance switching mode upon appropriate preconditioning procedures. Based on electrical measurements conducted in both switching modes and physical analysis performed on a device after electrical stress, resistance switching is attributed to the formation/dissolution of a conductive filament from the Ag electrode into the GST layer whereas the volatile/non-volatile resistance switching is attributed to the presence of an interface layer between the GST and the Ag top electrode.
View Article and Find Full Text PDFWe propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).
View Article and Find Full Text PDF