Publications by authors named "Marc Bichara"

Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria.

View Article and Find Full Text PDF

Cells possess two major DNA damage tolerance pathways that allow them to duplicate their genomes despite the presence of replication blocking lesions: translesion synthesis (TLS) and daughter strand gap repair (DSGR). The TLS pathway involves specialized DNA polymerases that are able to synthesize past DNA lesions while DSGR relies on Recombinational Repair (RR). At least two mechanisms are associated with RR: Homologous Recombination (HR) and RecA Mediated Excision Repair (RAMER).

View Article and Find Full Text PDF

The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs.

View Article and Find Full Text PDF

Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer.

View Article and Find Full Text PDF

Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF)-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E.

View Article and Find Full Text PDF

Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms.

View Article and Find Full Text PDF

During bacterial replication, DNA polymerases may encounter DNA lesions that block processive DNA synthesis. Uncoupling the replicative helicase from the stalled DNA polymerase results in the formation of single-stranded DNA (ssDNA) gaps, which are repaired by postreplication repair (PRR), a process that involves at least three mechanisms that collectively remove, circumvent or bypass lesions. RecA mediated excision repair (RAMER) and homologous recombination (HR) are strand-exchange mechanisms that appear to be the predominant strategies for gap repair in the absence of prolonged SOS induction.

View Article and Find Full Text PDF

In Escherichia coli, RecF-dependent post-replication repair (PRR) permits cells to tolerate the potentially lethal effects of blocking lesions at the replication fork. We have developed an in vivo experimental system to study the PRR mechanisms that allow blocked replication forks to be rescued by homologous sequences. We show that approximately 80% of the PRR events observed in SOS-uninduced cells are generated by RecA-mediated excision repair, a novel nucleotide excision repair- and RecA/RecF-dependent mechanism, while 20% are generated by RecF-dependent homologous recombination.

View Article and Find Full Text PDF

In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences.

View Article and Find Full Text PDF

Lesions that transiently block DNA synthesis generate replication intermediates with recombinogenic potential. In order to investigate the mechanisms involved in lesion-induced recombination, we developed an homologous recombination assay involving the transfer of genetic information from a plasmid donor molecule to the Escherichia coli chromosome. The replication blocking lesion used in the present assay is formed by covalent binding of the carcinogen N-2-acetylaminofluorene to the C8 position of guanine residues (G-AAF adducts).

View Article and Find Full Text PDF